

Building Open
World Landscapes with
Unreal Engine 5

Create stunning open world environments with
foliage, lighting, and materials in UE5

David Ignacio García
Ramón Olivero

Building Open World Landscapes with Unreal Engine 5
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Rohit Rajkumar

Relationship Lead: Tanisha Mehrotra

Program Manager: Sandip Tadge

Content Engineer: Shreya Sarkar

Technical Editor: Tejas Mhasvekar

Copy Editor: Safis Editing

Indexer: Pratik Shirodkar

Proofreader: Shreya Sarkar

Production Designer: Vijay Kamble

Growth Lead: Namita Velgekar

First published: November 2025

Production reference: 2081225

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83508-557-8

www.packtpub.com

http://www.packtpub.com

The ability to acquire and share knowledge is an inherent human trait, but it truly flourishes

when we are surrounded by individuals who ignite our imagination, creativity, and a perpetual

curiosity for learning.

We consider ourselves incredibly fortunate to have collaborated with an exceptional team

of professionals in every aspect discussed throughout this book. Our thanks go to the instructor

team at UT-HUB: Néstor, Alba, Natalia, Alejandro, and José Carlos, who supported us throughout

this creative journey and helped transform our initiatives into tangible projects. This would not have

been possible without you.

We also extend our gratitude to those who have fostered our personal and professional growth

throughout our lives, our parents. They are the foundational pillars upon which we have relied to

continue growing as professionals: Tahís and Ramón J., Marisa and José Ángel.

This achievement is yours as well.

- David Ignacio García, Ramón Olivero

Foreword

As Unreal Engine 5 began transforming digital environment design a few years back, my students

— and myself, to be honest! — sought a structured and complete guide to creating expansive and

immersive open worlds. Unfortunately, readily available resources offering such comprehensive

instruction were scarce. Most of the time, my students got lost in a maze of not-so-complete video

tutorials on the internet, with scarce results, I should say…

I wish they had had a book such as this in their hands back then; it would have saved them

countless hours of trial and error!

Building Open World Landscapes with Unreal Engine 5 provides a comprehensive guide to mastering

the engine’s complex terrain system and its related features. Authors David Ignacio García and

Ramón Olivero have done an amazing job structuring it to provide a systematic introduction to

the core principles and advanced techniques essential for effective environment design. Starting

from the basics, they have meticulously deconstructed many of the intricate processes, trans-

forming them into a series of manageable, easily reproducible steps. This approach is particularly

beneficial for people approaching the software for the first time.

What’s more, this book offers several key benefits for experienced Unreal Engine users looking to

enhance their skills, as it fosters a deep understanding of the underlying methodologies rather

than merely providing a superficial overview.

This book is not just a technical manual; it is a thoughtfully designed educational resource, em-

powering readers to engage critically with the vast creative potential of Unreal Engine 5’s envi-

ronment system.

I wholeheartedly recommend it.

Marco Secchi,

Freelance Game Developer, Academic Lecturer at NABA, Nuova Accademia di Belle Arti

Contributors

About the authors
David Ignacio García is a real-time 3D technologist, entrepreneur, and educator focused on

building robust Unreal Engine pipelines and solutions, with a long-standing commitment to the

real-time ecosystem. Trained as an architect, he transitioned from architectural visualization into

interactive simulation and virtual production, leading teams that design scalable Unreal Engine

workflows for AEC, entertainment, and enterprise.

He is the founder of BaboonLab, an Epic Games Service Partner specializing in Unreal Engine

consulting, education, and project development, and the creator of IdealTwin, a SaaS platform

that brings data-driven digital twin experiences to the web and Unreal Engine. A Gold Unreal

Authorized Instructor, David has trained hundreds of students and professionals through UT-

HUB and Epic programs, including the Unreal Fellowship, where he has served as TA, Mentor, and

Senior Instructor. He also serves at Epic Games as Partner x Education Advisor across Europe and

the Middle East, strengthening the partner and education ecosystem and accelerating adoption

of production-ready workflows.

David’s work spans city-scale visualization, procedural worldbuilding, performance optimization,

and pixel-streaming deployments, with a consistent emphasis on maintainable, production-ready

practices. His goal is to bridge creative intent and technical execution so teams can deliver ex-

pansive, real-time worlds with confidence.

Ramón Olivero is an architect and 3D visualization enthusiast who evolved from architectural

visualization to large-scale worldbuilding. This trajectory led him to specialize as a technical

artist focused on procedural tools, real-time environments, and virtual production. With years of

university teaching experience, he centers his career on bridging creative vision and technical exe-

cution. As an Unreal Engine instructor, Ramón has trained hundreds of students and professionals

through academic programs and industry initiatives, including Epic Games’ Unreal Fellowship.

His work empowers artists and developers to adopt production-ready workflows, optimize pipe-

lines, and bring expansive worlds to life in real time. Ramón serves as Head of Studio and instructor

at UT-HUB. His commitment to teaching and lifelong learning continues to inspire creators to

explore the possibilities of interactive worlds.

About the reviewers
Omar Costa is a cybersecurity specialist and independent game developer with an IT manage-

ment degree and an MBA in product management for the metaverse. He has technical experience

with languages (C#, C++, Python, JavaScript) and building projects with Unreal, Unity, and Godot

engines. Professionally, he is part of a multidisciplinary GRC team focused on cybersecurity sup-

plier risk assessment. He has led complex innovation and technological transformation projects,

leveraging technology as a strategic differentiator. His generalist profile and distinct mix of ex-

periences allowed him to apply a creative, analytical, and technological perspective to his review,

focusing on verifying this book’s accuracy and architectural integrity.

I would like to extend my sincere thanks to the authors and the entire Packt publishing team. It was a

pleasure and an honor to contribute to this book and collaborate with such dedicated professionals.

Simone Destro is a 3D developer and technical artist specializing in real-time applications

built with Unreal Engine. With several years of experience in the 3D industry, he has worked on

a wide range of projects across architecture, automotive, fashion, and virtual experiences. Simone

combines technical expertise with a strong artistic vision, developing interactive environments,

configurators, and immersive visual storytelling for clients and studios in diverse creative fields.

His background bridges art and technology through immersive digital design.

Table of Contents

Preface � xxi

Free Benefits with Your Book �� xxviii

Part 1: Setting Up Your Scene in Unreal Engine � 1

Chapter 1: Starting a Project in Unreal Engine � 3

Technical requirements ��� 4

Special hardware requirements for UE5 rendering features • 5

Other rendering features • 5

Learning the Unreal Engine terminology ��� 6

Installing Unreal Engine �� 8

Setting up the project and templates ��� 10

Exploring the Unreal Engine interface �� 13

Menu bar [1] • 14

Main toolbar [2] • 15

Level Viewport [3] • 16

Content Browser [4] • 18

Bottom toolbar [5] • 19

Outliner [6] • 20

Details panel [7] • 22

Summary ��� 24

Table of Contentsx

Chapter 2: Quixel Bridge, Megascans, and Fab � 27

Technical requirements ��� 28

Evolution of the Unreal Engine ecosystem and understanding its acquisitions ����������������� 29

Unreal Engine Marketplace (now Fab) • 29

Quixel • 29

ArtStation • 30

Sketchfab • 30

Introducing Fab – one Engine, one marketplace ��� 31

Searching for assets on Fab • 32

Browsing and acquiring assets on Fab • 33

My Library and Downloads • 35

Using Fab with Unreal Engine • 36

Introducing Quixel Bridge ��� 38

Enabling Quixel Bridge for Unreal Engine • 38

Launching Quixel Bridge in Unreal Engine • 39

Using Quixel Bridge for Unreal Engine • 40

Browsing the content • 41

Assets • 42

Download settings • 43

Resolution • 44

Export settings • 45

Importing and integrating Megascans assets ��� 46

Understanding the imported resources �� 48

Static Mesh • 50

Material and Material Instance • 50

Materials • 51

Material instancing • 52

Textures • 53

Table of Contents xi

Exercise 2.1: Adding a 3D asset from Quixel Bridge to Unreal Engine ��������������������������������� 55

Exercise 2.2: Selecting and applying a material to a Static Mesh �� 57

Why is asset configuration important in Quixel Bridge? �� 60

Summary ��� 61

Chapter 3: Ingestion and Static Meshes � 63

Technical requirements ��� 64

Understanding different mesh formats and their implications �� 64

Commonly used static mesh formats in Unreal Engine • 65

Importance of format selection • 66

Choosing the right format • 67

Best practices for file preparation before import �� 68

Optimizing mesh topology: ensuring efficient geometry • 68

UV unwrapping: laying the foundation for texturing • 69

Texture baking: capturing detail and realism • 69

Importing Static Meshes �� 69

Step-by-step guide to importing Static Meshes • 69

Understanding the main parameters from the Import Options • 72

Mesh and Transform • 72

Materials • 78

Finishing the import process • 79

Troubleshooting common import issues • 79

Material assignment and adjustments ��� 81

Assigning materials • 81

Modifying materials • 82

Performance and aesthetics • 84

Balancing visual quality with performance • 84

Material adjustments for environmental conditions • 84

Table of Contentsxii

Mesh optimization techniques �� 84

Why optimize? • 85

Optimization strategies • 85

Exercise 3.1: Importing our first Static Mesh �� 86

Downloading an FBX file from Sketchfab • 86

Importing an FBX file into Unreal Engine • 89

Exercise 3.2: Importing FBX as Skeletal Meshes ��� 94

Summary ��� 100

References �� 100

Chapter 4: Project Structure and Naming Conventions � 103

Technical requirements ��� 104

Advantages of a correct project structure and naming convention ����������������������������������� 104

Maintaining order and clarity • 105

Enhancing collaboration • 106

Facilitating scalability and maintenance • 107

Examples of project structure and name conventions �� 108

Exploring the Allar Style Guide • 108

Allowed characters • 108

Naming assets • 109

Content directory structure • 111

Guidelines for assets and resources created and imported into Unreal Engine • 115

Revision control tools for Unreal Engine ��� 117

Revision control options for Unreal Engine • 117

Best practices for source control in Unreal Engine • 121

Exercise 4.1: Applying a project structure and name convention protocols ����������������������� 122

Exercise 4.2: Using revision control tools for Unreal Engine ��� 123

Summary �� 127

Table of Contents xiii

Part 2: Creating and Detailing Your Open World � 129

Chapter 5: Managing Levels and Layers � 131

Technical requirements �� 132

Working with levels �� 132

Creating levels • 133

Saving levels • 136

Opening levels • 136

Managing levels • 136

Persistent level and sublevels • 138

Visibility and operations • 138

Level Details • 140

Level streaming • 141

Level streaming options • 141

Exploring lighting scenarios ��� 142

Using layers �� 144

Creating layers • 144

Working with layers • 146

Understanding World Partition �� 147

Working with World Partition • 148

Enabling World Partition • 148

Using World Partition • 149

Components and functionalities of World Partition • 153

Data Layers • 154

Level Instancing • 157

HLOD system • 157

One File Per Actor strategy • 159

Exercise 5.1: Setup and configuration of the level systems �� 160

Setting up levels and sublevels • 160

Loading and unloading Levels with Level Streaming Volumes • 160

Table of Contentsxiv

Choosing the right approach to level management �� 164

Core systems of level management • 164

Selecting the most suitable workflow • 165

Summary �� 165

Chapter 6: Building Your Landscape � 167

Technical requirements ��� 168

Introduction to level design ��� 168

Scene development: Inspiration and references ��� 168

Environment creation ��� 169

Selecting the environment creation method • 169

Fully modeled environment • 169

Landscape tools • 170

Understanding the blockout process • 170

Project creation and template selection �� 172

Creating a blank project • 172

Deleting the existing landscape • 176

Using Unreal Engine’s Landscape tools ��� 177

Manage tools • 179

Landscape details panel • 180

Landscape Components • 181

Using Unreal Engine’s Sculpt tools �� 184

Exercise 6.1: Creating a terrain from heightmaps ��� 188

Troubleshooting • 190

Exercise 6.2: Creating a custom landscape �� 192

Exercise 6.3: Sculpting a new terrain �� 193

Summary �� 197

Table of Contents xv

Chapter 7: Populating Your World with Foliage � 199

Technical requirements �� 200

Understanding the terminology �� 200

Using Foliage Mode �� 201

Enabling Foliage Mode • 201

Using the Foliage tools • 208

Paint • 208

Erase • 211

Lasso • 212

Deselect • 213

Remove • 213

Select • 213

All • 214

Single • 215

Fill • 216

Reapply • 217

Static Mesh Foliage optimization ��� 220

Lighting • 222

Textures • 222

Summary ��� 225

Chapter 8: Introduction to Materials � 227

Technical requirements ��� 228

Understanding the terminology ��� 228

Exploring the Material Editor interface ��� 229

Graph • 232

Palette • 233

Viewport • 234

Details panel • 236

Toolbar • 236

Stats • 238

Table of Contentsxvi

Working in the Material Editor �� 239

Float • 239

Float2 • 239

Float3 • 239

Float4 • 240

Overview of PBR materials �� 241

Base Color • 242

Metallic property • 242

Specular • 243

Roughness • 243

Normal • 244

Ambient Occlusion • 244

Exercise 8.1: Creating a gold material ��� 245

Delving into texture implementation �� 246

Formats and resolutions • 247

Working with textures in the Material Editor • 248

Material workflows �� 251

Material Instances • 251

Texturing landscapes • 252

Common landscape material expressions • 253

Generating vegetation from landscape material • 255

Implementing landscape material expression • 258

Summary ��� 265

Part 3: Lighting and Post-Processing for Realism � 269

Chapter 9: Create Your World’s Atmospheric Lighting � 271

Technical requirements ��� 272

Lighting in Unreal Engine �� 272

Light mobility • 272

Exploring Lumen • 274

Table of Contents xvii

Using the Environment Light Mixer ��� 276

DirectionalLight • 278

Light properties • 278

Light Shafts • 279

SkyLight • 280

Movable Sky Light • 281

Real Time Capture • 282

SkyAtmosphere • 283

Rayleigh Scattering • 284

Mie Scattering • 286

Art Direction • 289

Planetary atmospheres viewed from space • 290

ExponentialHeightFog • 292

VolumetricCloud • 294

Enhancing real-time rendering with Virtual Shadow Maps, Nanite, and Lumen ������������� 296

Summary ��� 299

Chapter 10: Setting up your Post Process Volume � 301

Technical requirements ��� 302

Exploring Post Process Volumes in Unreal Engine ��� 302

When to use Post Process Volumes • 304

Post Process Volume properties • 305

Features of Post Process Volume • 308

Lens section • 309

Color Grading section • 314

Film section • 316

Global Illumination section • 317

Film Grain effect • 318

Best practices for overlapping and blending • 320

Color grading and tonemapping workflow �� 320

Table of Contentsxviii

Performance and frame-rate considerations for Post Process Volume ����������������������������� 322

Using a mental model • 322

How to test quickly • 322

Exercise 10.1: Color adjustment in an outdoor scene �� 323

Summary ��� 326

Part 4: Blueprints, Testing, and Optimization � 329

Chapter 11: Understanding Programming Logic and Blueprints � 331

Technical requirements ��� 332

Basic concepts of programming with Blueprints ��� 332

Nodes • 332

Connections • 332

Exploring Blueprint types �� 333

Level Blueprint • 333

Blueprint Class • 333

Data-Only Blueprint • 334

Blueprint Interface • 334

Blueprint Macro Library • 334

Blueprint Utilities • 334

Creating a Blueprint Class �� 334

Understanding Blueprint Class hierarchy • 335

Exploring the Blueprint interface • 337

Exercise 11.1: Developing a tool for randomly placing Static Meshes �������������������������������� 338

Creating a Blueprint of the Actor class • 338

Adding nodes • 339

Adding variables • 342

Controlling the transform where the Static Meshes are created • 346

Table of Contents xix

Exercise 11.2: Creating Blueprints with components �� 349

Creating a Blueprint of the Actor class and adding components • 349

Creating a reference • 351

Creating a Blueprint from Actors in the level • 354

Exercise 11.3: Creating a Blueprint from the Editor �� 354

Debugging and optimizing Blueprints �� 357

Next steps and Blueprint troubleshooting • 358

Troubleshooting Blueprint issues • 358

Summary ��� 359

Chapter 12: Optimizing and Testing Your Scene � 361

Technical requirements ��� 362

Things to consider before starting a project ��� 362

Understanding real-time rendering ��� 363

Understanding how meshes are drawn: vertices, triangles, and pixels • 363

Diving into the rendering process in Unreal Engine • 364

Exploring the rendering workflow • 366

Frame 0 • 368

Frame 1 • 369

Frame 2 • 372

Draw calls • 373

Understanding profiling �� 376

Working with the GPU Visualizer • 379

Auditing with Statistics and Resource Usage • 383

Using Resource Usage • 384

Best practices ��� 385

Geometry • 385

LODs • 386

Generating LODs • 386

Textures • 388

Example: Scene analysis • 389

Table of Contentsxx

Summary ��� 392

The journey ahead • 393

Chapter 13: Unlock Your Exclusive Benefits � 395

Unlock this Book’s Free Benefits in 3 Easy Steps �� 395

Other Books You May Enjoy � 401

Index � 405

Preface

Creating natural and believable open worlds has always been one of the greatest challenges

in game development. The vast scale, fine detail, and technical complexity they demand often

make the process overwhelming for artists and designers alike. The goal of Building Open World

Landscapes with Unreal Engine 5 is to make that journey approachable. It provides a structured

and practical framework to help you understand how Unreal Engine 5 (UE5) equips you with

the tools needed to design, build, and optimize large-scale environments with confidence and

artistic intent.

Throughout the book’s chapters, we will explore every key stage of world creation from initial

project setup and efficient asset management, through level organization and World Partition, to

terrain sculpting, material creation, foliage workflows, lighting design, and performance optimi-

zation. Each topic connects seamlessly to the next, guiding you from core principles to advanced

techniques for building production-quality environments.

This book follows a hands-on learning methodology: each concept is introduced through

real-world examples and step-by-step exercises that reflect professional studio practices. The

focus is not only on gaining expertise at using the tools, but also on understanding the reasoning

behind each decision, helping you develop both technical proficiency and creative judgment.

By the end of this journey, you will have built your own optimized open world environment in

UE5. More importantly, you will understand the complete workflow required to take an idea

from early reference gathering and world planning to a visually rich, efficient, and scalable envi-

ronment. Whether your goal is game development, cinematic production, or virtual production,

this book will provide you with the insight and skills to transform your creative vision into a

compelling world.

Who this book is for
If you want to use UE5 to create convincing open world environments, this book is for you. It’s

a practical guide for aspiring level and game designers, environment and technical artists, indie

developers, and educators or students who need a clear, production-ready workflow.

Prefacexxii

You’ll learn studio-relevant skills: sculpting terrains, building landscape materials, painting veg-

etation and foliage, setting up lighting, and optimizing large levels. Along the way, you’ll work

with World Partition for streaming, tap into Quixel Megascans for high-quality assets, and apply

profiling techniques to keep performance on target. The result is portfolio-ready worlds you can

iterate on for gameplay, cinematics, or virtual production.

No prior expertise is required, only a basic familiarity with Unreal Engine and core 3D concepts.

The book takes you step by step from first principles to confident execution, so you can ship en-

vironments that look great and run efficiently.

What this book covers
Chapter 1, Starting a Project in Unreal Engine, establishes the development environment and core

terminology. It walks you through installing UE5, creating a new project from templates, and

navigating the interface, viewports, and essential panels. By the end of the chapter, you will be

able to configure basic project settings and understand the key tools needed to begin building

environments.

Chapter 2, Quixel Bridge, Megascans, and Fab, maps the UE5 asset ecosystem and shows how to

source and manage production-ready content. It introduces Fab as a unified marketplace, then

demonstrates using Quixel Bridge inside the editor to browse, import, and organize Megascans

assets, including surfaces, 3D models, and digital humans.

Chapter 3, Ingestion and Static Meshes, focuses on importing and validating static meshes for re-

al-time use in UE5. It covers clean ingestion workflows, scale and orientation checks, common

import issues, and optimization techniques, including Level of Detail (LODs), mesh simplifica-

tion, and efficient UVs. The chapter also applies materials to meshes and demonstrates practical

exercises that balance visual fidelity with performance.

Chapter 4, Project Structure and Naming Conventions, establishes a clear folder hierarchy and con-

sistent naming to keep UE5 projects scalable and team-friendly. It references the Allar style guide

as a practical baseline, then shows how to apply conventions to assets, actors, and code. The

chapter also introduces version control options (Git, Perforce, Plastic, and SVN) and best practices

for repositories, enabling reliable collaboration and safer iteration.

Chapter 5, Managing Levels and Layers, explains how UE5 organizes game worlds and why that

structure matters for scale, collaboration, and performance. It introduces levels, lighting scenarios,

and layers, then contrasts traditional level/sublevel hierarchies with World Partition, detailing

streaming, region-based editing, and multi-user workflows.

Preface xxiii

Chapter 6, Building Your Landscape, moves from planning to hands-on environment creation in

UE5. It introduces practical methods to translate ideas into a playable scene, covering project/

template selection, early scene blocking, and validation techniques, then guides you through

Landscape and Sculpt tools for shaping natural terrain.

Chapter 7, Populating Your World with Foliage, introduces UE5 tools for adding, managing, and

optimizing plant life to shape mood, narrative, and atmosphere. It explains foliage terminology,

demonstrates Foliage Mode for rapid painting and editing of large areas, and outlines procedur-

al options for broad coverage. The chapter concludes with performance tips for density, LODs,

culling, and instancing to keep rich scenes efficient at scale.

Chapter 8, Introduction to Materials, explains how surfaces respond to light and how to build

physically based materials in UE5. It orients you to the Material Editor interface, common nodes,

and texture inputs, then walks through Physically Based Rendering (PBR) workflows for creating

consistent, reusable materials and material instances. The chapter also highlights practical tips

for organization and performance when authoring shaders at scale.

Chapter 9, Create Your World’s Atmospheric Lighting, focuses on building believable, performant open

world lighting in UE5. It introduces the Environment Light Mixer and key actors for physically

grounded ambience, then explains Lumen, Virtual Shadow Maps, and Nanite considerations for

quality and performance, including tuning exposure, shadows, and time-of-day for consistent

results.

Chapter 10, Setting Up Your Post Process Volume, shows how to control a scene’s final look using

global volumes. It covers setup and tuning of core effects: color grading and tonemapping, Bloom,

and Depth of Field, plus blending, priorities for consistent art direction. The chapter closes with

best practices for dynamic changes and performance in large open world levels.

Chapter 11, Understanding Programming Logic and Blueprints, introduces UE5’s visual scripting for

building game and tool logic without writing code. It explains the node-based workflow, core

concepts (variables, events, functions, and the Construction Script), and common Blueprint

types. The chapter then walks through creating a Blueprint Class and shows how to prototype

reusable tools that streamline environment creation and iteration.

Chapter 12, Optimizing and Testing Your Scene, reframes world-building with performance as a

continuous design constraint. It explains the real-time rendering pipeline and shows how to

profile scenes to locate bottlenecks, then applies best practices across meshes, materials, lighting,

collisions, and LODs for open world scale.

Prefacexxiv

To get the most out of this book
You should feel comfortable with basic 3D concepts such as meshes, UVs, textures, materials,

and lighting, as well as with Unreal Engine’s navigation and interface. If you’ve already opened

a project, moved the camera, and placed a few Actors in a scene, you’re ready to begin.

Recommended knowledge (helpful, but not required)
Some familiarity with asset management tools such as Fab or Quixel Bridge, project organization,

and real-time performance concepts (LODs, draw calls, and culling) will help you follow along

more easily. A basic understanding of Blueprints will also make the exercises more intuitive.

Additional skills that accelerate learning
Knowing how to use version control systems such as Git, Perforce, and Tortoise can make exper-

imentation safer. Building and maintaining mood boards or visual reference folders helps define

a consistent artistic direction. Understanding scale, proportion, and composition supports better

design decisions in large environments, while a grasp of PBR materials and texture maps (Base

Color, Normal, Roughness, Metallic, and Ambient Occlusion) ensures that surfaces react to

light realistically.

Software/hardware requirements
To follow along smoothly, make sure your system meets or exceeds the following specifications.

All examples and screenshots in this book were developed and tested on Windows 10/11, which

is the recommended platform. While macOS users can complete most exercises, minor interface

differences and some performance variations may occur.

Software covered in the book Details

Unreal Engine 5.5 or later Available for free through the Epic Games

Launcher. Ensure that the Starter Content and

Quixel Bridge plugins are installed

Epic Games Launcher Required for downloading Unreal Engine,

managing updates, and accessing Fab (the

unified marketplace)

Quixel Bridge / Fab integration Required for asset browsing and importing

from the Megascans library

Preface xxv

Software covered in the book Details

Visual Studio 2022 (Community Edition) or

Rider for Unreal Engine

Version Control Client Git, Perforce, or Plastic SCM is recommended

for managing project iterations

Image editing software (optional) Adobe Photoshop, GIMP, or Substance 3D

Sampler for creating or adjusting textures

Web browser Required to access online references

Hardware covered in the book Specifications

Operating System Windows 10/11 (recommended) or macOS

Monterey (or newer).

Processor (CPU) 6-core or higher (Intel i7 / AMD Ryzen 7 or

equivalent)

Memory (RAM) Minimum 16 GB, 32 GB recommended for

open world projects

Graphics (GPU) NVIDIA RTX 3060/AMD RX 6700 XT or better,

8 GB VRAM or higher

Storage SSD with at least 100 GB of free space for

Unreal Engine, project files, and assets

Display 1080p minimum; 1440p or higher

recommended for comfortable workspace

visibility

Internet Connection Required for downloading Unreal Engine,

Megascans assets, and updates.

Note for macOS users: Unreal Engine 5.5 runs on macOS, but some GPU-dependent features, such

as Nanite and Lumen, may be limited or perform differently compared to Windows. Where rele-

vant, equivalent workflows will be noted, but all examples and optimizations are demonstrated

on Windows.

Prefacexxvi

To make the most of the book, work chapter by chapter, take notes, and profile your scenes reg-

ularly (in fps). Keep your project well structured and under version control. Good organization

saves time and helps you iterate efficiently as your world grows.

Note that the authors acknowledge the use of cutting-edge AI, such as ChatGPT, with the sole

aim of enhancing the language and clarity within the book, thereby ensuring a smooth reading

experience for readers. It’s important to note that the content itself has been crafted by the author

and edited by a professional publishing team.

Download the color images
To help you follow the Unreal Engine 5 workflows more easily, we also provide a PDF file con-

taining all screenshots in color. This PDF allows you to zoom in and view settings, parameters,

and UI elements. You can download the PDF file here: https://packt.link/gbp/9781835085578

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and X (formerly, Twitter) handles. For exam-

ple: “After creating our level, it’s a good time to save it in the OpenWorldLevel folder created in

the previous step before starting to work on any modifications:”

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “The next step is to add the

Scale variable and connect it to the Relative Transform Scale of the Add Static Mesh Component

node. This will allow us to configure the global scale of all Static Meshes created from the editor.”

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

https://packt.link/gbp/9781835085578

Preface xxvii

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book or have any general feed-

back, please email us at customercare@packt.com and mention the book’s title in the subject

of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packt.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packt.com/.

Share your thoughts
Once you’ve read Building Open World Landscapes with Unreal Engine 5, we’d love to hear your

thoughts! Please click here to go straight to the Amazon review page for this book and share

your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://www.packt.com/submit-errata
http://authors.packt.com/
https://packt.link/r/1835085571

Prefacexxviii

Free Benefits with Your Book
This book comes with free benefits to support your learning. Activate them now for instant access

(see the “How to Unlock” section for instructions).

Here’s a quick overview of what you can instantly unlock with your purchase:

PDF and ePub Copies Next-Gen Web-Based Reader

Access a DRM-free PDF copy of this book

to read anywhere, on any device.

Multi-device progress sync: Pick up

where you left off, on any device.

Use a DRM-free ePub version with your

favorite e-reader.
 Highlighting and notetaking: Capture

ideas and turn reading into lasting

knowledge.

 Bookmarking: Save and revisit key

sections whenever you need them.

Dark mode: Reduce eye strain by

switching to dark or sepia themes.

Preface xxix

How to Unlock
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require one.

http://packtpub.com/unlock

Part 1
Setting Up Your Scene

in Unreal Engine
This part focuses on the initial setup and foundation of your Unreal Engine project. It begins by

helping you establish the development environment, install Unreal Engine 5, and navigate its

core interface. You’ll then explore how to access and manage production-ready assets using Fab

and Quixel Bridge, followed by importing and validating Static Meshes to ensure correct scale,

orientation, and optimization for real-time use.

The part concludes with best practices for organizing your project through naming conventions,

folder hierarchies, and version control systems, laying a structured base for building larger, more

complex environments later in the book.

This part of the book includes the following chapters:

•	 Chapter 1, Starting a Project in Unreal Engine

•	 Chapter 2, Quixel Bridge, Megascans, and Fab

•	 Chapter 3, Ingestion and Static Meshes

•	 Chapter 4, Project Structure and Naming Conventions

1
Starting a Project in
Unreal Engine

Welcome to the fascinating world of Unreal Engine 5 (UE5). Within the pages of this book, we

will explore the art of crafting stunning landscapes and immersive environments by utilizing the

array of tools provided by Epic Games for Unreal Engine.

Before setting off on our journey to construct breathtaking worlds, our first essential task is to

set up our development environment. Unreal Engine is readily available for free download. In

the ensuing sections, we will learn about engine installation and project creation, acquainting

ourselves with the interface and the many tools available at our disposal.

Within this chapter, we will explore the following key topics:

•	 Learning the Unreal Engine terminology

•	 Installing Unreal Engine

•	 Setting up the project and templates

•	 Exploring the Unreal Engine interface

Free Benefits with Your Book
Your purchase includes a free PDF copy of this book along with other exclusive benefits. Check

the Free Benefits with Your Book section in the Preface to unlock them instantly and maximize

your learning experience.

Starting a Project in Unreal Engine4

Technical requirements
Unreal Engine has minimum and recommended hardware requirements for version 5.5, and there

are special hardware requirements related to its advanced rendering features.

These special requirements ensure that the advanced rendering features in UE5 can deliver their

full potential and provide the best possible visual quality and performance. It’s crucial to meet

or exceed these requirements if you plan to utilize these features extensively in your projects.

Here’s an overview.

These are the minimum hardware requirements:

•	 Operating system: Windows 10 64-bit version

•	 Processor: Dual-core Intel or AMD, 2.5 GHz or faster

•	 Memory: 8 GB RAM

•	 Graphics card: DirectX 11 compatible graphics card with at least 1 GB of VRAM

•	 Hard drive: 100 GB of free space (SSD recommended)

These are the recommended hardware requirements:

•	 Operating system: Windows 10 64-bit version 1909 revision .1350 or higher, or versions

2004 and 20H2 revision .789 or higher

•	 Processor: Quad-core Intel or AMD, 2.5 GHz or faster

•	 Memory: 8 GB RAM

•	 Graphics card: DirectX 11 or 12 compatible graphics card with the latest drivers

Important note

Please note that these are the minimum requirements for running the engine and

working on basic projects. More complex projects or the use of advanced features

may require better hardware.

Note

These recommended specifications will provide a smoother and more efficient ex-

perience when working with Unreal Engine and UE5, especially for larger and more

complex projects.

Chapter 1 5

Special hardware requirements for UE5 rendering features
UE5 introduces advanced rendering features such as Lumen Global Illumination, Nanite virtu-

alized geometry, and more. These features may have additional hardware requirements to fully

utilize their capabilities.

These are the Lumen Global Illumination and Reflections requirements:

•	 Software Ray Tracing: This feature may require a video card using DirectX 11 with support

for Shader Model 5

•	 Hardware Ray Tracing: Requires Windows 10 build 1909.1350 or newer with DirectX 12

support and specific compatible graphics cards (e.g., NVIDIA RTX-2000 series or newer,

AMD RX-6000 series or newer, Intel® Arc™ A-Series graphics cards or newer)

These are the Nanite virtualized geometry requirements:

•	 Windows 10 build 1909.1350 or newer, or Windows 11 with support for DirectX 12 Agility

SDK

•	 DirectX 12 (with Shader Model 6.6 atomics) or Vulkan (VK_KHR_shader_atomic_int64)

is necessary

•	 SM6 (Shader Model 6) must be enabled in Project Settings (enabled by default in new

projects)

Other rendering features
UE5 may have specific hardware requirements or recommendations for other advanced render-

ing features, so it’s essential to check the official UE5 documentation for the most up-to-date

information.

 Important note

At the time of writing, an earlier version of Unreal Engine was in use. However, the

screenshots, examples, and exercises have since been reviewed to reflect changes

introduced in version 5.6. You may still notice slight differences in menus, layouts,

or naming conventions due to ongoing updates to the engine’s interface. These

variations will not affect your ability to follow the instructions or complete the ex-

ercises. For additional context on recent interface updates, the official Unreal Engine

documentation may be useful: https://dev.epicgames.com/documentation.

https://dev.epicgames.com/documentation

Starting a Project in Unreal Engine6

Learning the Unreal Engine terminology
In this section, we’ll explore key terminology commonly used in the context of Unreal Engine,

shedding light on fundamental concepts:

•	 Project: An Unreal Engine project serves as the container for all the elements within your

creative endeavor. It allows you to structure your work by organizing content into folders.

Each project is represented by a .uproject file, which is essential for project creation,

opening, and saving. This concept distinguishes Unreal Engine from other digital content

creation (DCC) tools, as it embraces a project-based approach, particularly relevant due

to its origins as a game engine where compilation plays a vital role.

•	 Blueprint: The Blueprint Visual Scripting system is a comprehensive gameplay script-

ing tool within Unreal Editor. It employs a node-based interface to construct gameplay

elements. Objects created using Blueprint are often colloquially referred to as Blueprints.

This distinction sets Unreal Engine apart, offering non-C++ programmers a powerful way

to implement programming logic.

•	 Object: Objects represent the fundamental building blocks within Unreal Engine. In es-

sence, they encapsulate essential functionality for assets. Objects, or UObjects as referred

to in C++, serve as the parent class from which all other Unreal classes inherit. In other

words, every element or class within Unreal is derived from UObject.

•	 Actor: Actors form the backbone of any Unreal Engine project, embodying all objects that

can be placed or spawned within a game level. This broad category includes a variety

of elements, such as cameras that capture the game world from different angles, static

meshes that provide the physical structures and objects within the game, or player start

locations that define where a player enters the game world. Actors are versatile and support

3D transformations, enabling them to move (translate), rotate, and change size (scale)

within the game space. Their lifecycle is dynamic; they can be instantiated or removed

during gameplay through scripted code, allowing for interactive and responsive game

environments that can change over time or in response to player actions.

•	 Pawn: Pawns are a specialized subclass of Actors designed to serve as the in-game repre-

sentations or avatars of players or AI entities. They are essentially the characters or enti-

ties within the game that can have some form of agency. Unlike the broader Actor class,

Pawns are specifically meant to be controlled. They can be directed by human players,

providing a direct interface for player interaction within the game world, or be automated

and driven by the game’s AI, acting as non-player characters (NPCs) with varying de-

grees of complexity and autonomy. This duality allows for a rich interaction between the

player-controlled characters and the game environment, including AI-controlled entities.

Chapter 1 7

•	 Character: Within the hierarchy of Unreal Engine’s class system, Characters are a further

refinement of Pawns, tailored for more complex, player-controlled entities, typically those

that walk on two legs or require sophisticated movement dynamics. This subclass is op-

timized for bipedal movement and includes preconfigured setups for collision detection,

which is crucial for a realistic interaction with the game world, and input bindings that

map player actions to character movements and behaviors. Characters are designed to

facilitate the creation of player avatars with advanced capabilities, including running,

jumping, and other actions that player characters commonly perform, supported by ad-

ditional code that enhances the interactivity and responsiveness of player-controlled

characters within the game.

•	 Brush: Brushes are a type of Actor and define 3D shapes, such as cubes or spheres. They find

utility in level geometry design and are known as Binary Space Partition (BSP) brushes.

While useful for fast level blocking, they are not typically employed as a final method of

level design. Instead, they are often replaced with static meshes as the project progresses.

Unreal Engine also offers modern methods for geometry modeling and level blocking,

which will be discussed later in Chapter 6.

•	 Level: Although we will talk about levels in Chapter 5, it’s an important concept to know

from the beginning of this journey. A level in Unreal Engine is a self-contained environ-

ment or scene where gameplay takes place. It is a composite of all the elements that make

up the game space, including the geometry that forms the physical world, the Actors

and Pawns that populate it, and the various interactive and static objects that define the

player’s experience. Each level is crafted to deliver a unique set of challenges, narratives,

and aesthetics, encapsulated within a .umap file. Levels are the stages or worlds within

which the game unfolds, designed by developers to create immersive and engaging en-

vironments. They are the canvas on which the game’s story is painted, allowing for the

seamless integration of gameplay mechanics, narrative elements, and the visual and

auditory experience of the game.

•	 World: The world acts as a container for all the levels constituting your game or project.

Typically, worlds are organized into specific levels, each serving a unique purpose, such

as lighting, events, or geometry. The organization of worlds and levels varies based on

project requirements, emphasizing the importance of tailoring this structure to your

project’s specific needs. Understanding the scope of your project is paramount in making

these organizational decisions.

Now that the technical requirements, including technologies and key concepts within Unreal

Engine, are understood, let’s explore where we can find the installers and the installation process.

Starting a Project in Unreal Engine8

Installing Unreal Engine
To begin, you need to install the Epic Games Launcher by following these steps:

1.	 Go to the Unreal Engine website by opening your web browser and navigating to https://

www.unrealengine.com/.

2.	 Register and download the Epic Games Launcher. Look for the option to register or create

an account on the website.

3.	 Complete the registration process by providing the required information.

4.	 After registering, you will have the option to download the Epic Games Launcher. Click

on the Download link to start the download.

5.	 Sign in to the Epic Games Launcher.

6.	 Once the Epic Games Launcher installer is downloaded, run the installer.

7.	 Follow the installation instructions to install the Epic Games Launcher on your computer.

8.	 After installation, launch the Epic Games Launcher.

9.	 Open the Epic Games Launcher that you’ve just installed on your computer.

10.	 You may need to sign in using the account you created earlier.

11.	 Inside the Epic Games Launcher, you will see various tabs on the left-hand side. Click on

the Unreal Engine tab. This is where you will manage Unreal Engine installations.

12.	 At the top of the Epic Games Launcher, you’ll see several tabs. Click on the Library tab.

This is where you can view and manage your Unreal Engine installations.

13.	 Under the Library tab, you’ll find a section called ENGINE VERSIONS. To install a specific

version of Unreal Engine, click the + icon next to ENGINE VERSIONS.

14.	 Unreal Engine provides several versions to choose from. Choose the desired version you

need to install from the list of available options.

Depending on your computer’s specifications and internet connection speed, the down-

load and installation of Unreal Engine can take 10 to 40 minutes or more.

https://www.unrealengine.com/
https://www.unrealengine.com/

Chapter 1 9

15.	 After selecting the version you want, click the Install button. The launcher will start

downloading and installing that specific version of Unreal Engine.

16.	 Once the installation is complete, click the Launch button to start the Unreal Engine

you’ve installed.

Several versions of Unreal Engine can be installed on your computer. Remember to select

the preferred version on the top right Launch button drop-down list; a version of Unreal

Engine 5.5 or later is recommended. You will only be able to select from the installed

versions.

In Figure 1.1, you can see the Library tab from the Epic Games Launcher, where the 5.6.1 version

is already installed and assigned as the default engine:

Figure 1.1 – Unreal Engine section in Epic Games Launcher

You are ready to start creating and working on your projects. Make sure to keep your Unreal Engine

installations up to date to access the latest features and improvements.

Starting a Project in Unreal Engine10

Setting up the project and templates
When you launch Unreal Engine without specifying a particular project, the Unreal Project Browser

automatically opens, as shown here:

Figure 1.2 – The Unreal Project Browser

Figure 1.2 shows the following sections:

1.	 In this browser, you can choose the category (1) for templates. If you’ve previously created

projects in Unreal Engine, you’ll have a RECENT PROJECTS category, allowing you to

reopen any of your recent projects. The available categories include the following:

•	 GAMES

•	 FILM / VIDEO & LIVE EVENTS

•	 ARCHITECTURE

•	 AUTOMOTIVE, PRODUCT DESIGN & MANUFACTURING

•	 SIMULATION

Chapter 1 11

2.	 The category templates (2) serve as foundational frameworks containing files and a level,

providing a starting point for various project types. You also have the option to begin with

an empty template. Within the GAMES category, you’ll find the following:

•	 First Person: This template is designed for games with a first-person perspective.

It features a player character represented by arms holding a gun. Players can move

the character within the level with the help of a keyboard, controller, or virtual

joystick on a touch device.

•	 Third Person: This includes a playable character with a camera that follows it

from behind and slightly above. The character comes with walking, running, and

jumping animations. It can be controlled with the help of a keyboard, controller,

or virtual joystick on a touch device.

•	 Top Down: This features a character controlled by mouse input, with a camera

positioned high above. Players control the character by clicking on their desired

destination, utilizing a navigation system to avoid obstacles. This top-down view

is commonly used in action role-playing games.

•	 Handheld AR: This is designed for augmented reality (AR) applications on An-

droid and iOS devices. It provides runtime logic for toggling AR mode on and off.

It also provides example code for hit detection and handling light estimation.

•	 Virtual Reality: This is equipped with essential features for virtual reality (VR)

games, including teleport locomotion, grabbable objects, interactive elements,

and a VR spectator camera. This template includes a level where players can move

around and interact with objects.

•	 Vehicle: This contains both regular and complex vehicles with suspension systems.

The template includes a simple track and various obstacles.

3.	 In the Project Defaults section (3), you can set your project’s specifications, including the

target platform (the hardware where your game or application will run), quality settings,

ray tracing options, and more. You will find these options in Project Defaults:

•	 Implementation: Choose how you want to implement your project’s logic, either

through Blueprints or C++.

•	 Target Platform: Specify whether your project targets Desktop or Mobile plat-

forms.

Starting a Project in Unreal Engine12

•	 Quality Preset: Select the maximum quality level based on your project’s target

platform, choosing between Maximum (recommended for computer or game

console projects) or Scalable (recommended for mobile device projects).

•	 Starter Content: This includes simple static meshes with basic textures and ma-

terials, useful for quick learning and experimentation.

•	 Ray Tracing: Decide whether to enable or disable ray tracing for your project.

4.	 In Project Location (4), you can indicate where you want to save your project and provide

it with a name.

In the following figure, you will see the configuration we used in our project: template

category (1), template file (2), Project Location (3), and Project Name (4).

Figure 1.3 – Project creation from VR template

Chapter 1 13

5.	 Finally, click Create to initiate the project creation process. Unreal Engine will automat-

ically open your newly created project.

The process may take a few minutes, but once the shaders have finished compiling and the project

has loaded, the main Unreal Engine interface will open, giving you access to the tools and panels

you need to begin your development journey.

Exploring the Unreal Engine interface
After your project loads, upon launching UE5 for the first time, you’ll find yourself within the

Unreal Engine Level Editor interface, as shown here:

Figure 1.4 – An overview of the Unreal Engine Level Editor

It’s essential to acquaint yourself with the general purpose and functionality of these compo-

nents, particularly if you’re new to game and application development using UE5. Let’s see them

in more detail.

 Important note

We will utilize the Virtual Reality template found in the GAMES category to

leverage features such as teleport locomotion and the VR spectator camera.

Starting a Project in Unreal Engine14

Menu bar [1]
The menu bar, as shown in Figure 1.5, is a crucial navigational hub within the Unreal Engine

Level Editor, offering a wide range of tools and options to help you create, edit, and manage your

projects efficiently.

Figure 1.5 – The menu bar

Here’s a brief overview of the different tabs on the menu bar and their functions:

•	 File: This menu typically contains options for creating new projects, opening existing

projects, saving, and exporting your work. You can also find project packaging and de-

ployment options here.

•	 Edit: This menu offers various editing functions, including undo and redo, copy and

paste, and the ability to find and replace elements within your project. It often contains

keyboard shortcuts for these actions as well. This also provides access to the settings and

preferences of the Unreal Engine editor. You can configure editor-specific preferences,

project settings, and other customization options.

•	 Window: This menu allows you to manage open windows and panels within the editor.

You can arrange and customize your workspace by docking or floating windows, and you

can also access different layout presets.

•	 Tools: This menu allows you to open many different tools made for analyzing and helping

you get a better understanding of your project. These new panels or tools are usually more

developer- or optimization-focused than the ones you can open from the Window menu.

•	 Build: In this menu, you find options related to building different elements of your project.

It includes functions such as building lighting, rebuilding levels, navigation, and landscape.

•	 Select: This menu allows you to choose between different selection options that can help

you gather the elements you specifically want in bulk, instead of selecting individual

elements one by one.

•	 Actor: This menu offers you a list of tools and options to manipulate the Actors in your

level – from opening the sub-editor to working with snaps or optimizing the asset.

•	 Help: This menu contains resources and information to assist you in using Unreal Engine.

You can access documentation, tutorials, and community support from here. It may also

include information about the editor’s version and updates.

Chapter 1 15

Main toolbar [2]
The main toolbar is a highly useful interface component within Unreal Editor, offering shortcuts

to frequently used tools and commands. It is thoughtfully divided into distinct areas, each serving

a specific purpose:

Figure 1.6 – The main toolbar

Here’s a closer look at some key features you’ll frequently use from the main toolbar:

•	 Save: This button serves as a quick means to save the currently open level. However, it

should be noted that it only saves the progress made within the current level and not any

new assets created during your work.

•	 Selection Mode: Within this section, you’ll find shortcuts that enable rapid switching

between different editing modes tailored for specific content within your level:

•	 Selection: Used for selecting and manipulating objects

•	 Landscape: Specifically designed for terrain and landscape editing

•	 Foliage: Focused on vegetation placement and editing

•	 Mesh Painting: Ideal for applying and editing textures or materials on meshes

•	 Modeling: For detailed 3D modeling and object creation; requires the Modeling

Tools Editor Mode plugin to be enabled

•	 Fracture: Designed for fracturing objects and dealing with destructible elements

•	 Brush Editing: Primarily used for shaping and sculpting geometry

•	 Animation: Dedicated to animation-related tasks

•	 Content Shortcuts: This segment provides shortcuts for adding and accessing common

types of content within the Level Editor:

•	 Create: Offers a list of frequently used assets for convenient addition to your level.

It also grants access to the Place Actors panels, facilitating quick asset placement.

•	 Blueprints: Enables the creation and access of Blueprints, a vital aspect of Unreal

Engine’s visual scripting system.

•	 Cinematics: Streamlines the creation of cinematic sequences, including Level

sequences and master sequences.

Starting a Project in Unreal Engine16

•	 Play Mode: Here, you’ll find shortcut buttons that allow you to initiate and experience

your game directly within the editor. It’s a valuable tool for testing and previewing your

project’s functionality.

•	 Platforms: This section contains an array of options for configuring, preparing, and de-

ploying your project to various platforms, including desktop, mobile devices, and consoles.

It streamlines the process of ensuring your project is compatible with your target platform.

•	 Settings: This category encompasses a range of configuration options related to the Unreal

Editor, the Level Editor Viewport, and the behavior of your game. It provides flexibility

and control over your editing environment and project execution.

Level Viewport [3]
The Level Viewport is a critical component of the Unreal Editor interface, serving as the canvas

where the contents of the currently open level are displayed and edited. It provides a dynamic

visual representation of your level, enabling you to interact with and manipulate the various

elements that comprise your project.

In Figure 1.7, we can see the Level Viewport. Additionally, it’s possible to observe that within its

workspace, there are other tools and functionalities.

Figure 1.7 – Level Viewport

Chapter 1 17

Understanding the functionalities available within this key interface can greatly enhance your

development workflow:

•	 View modes: The Level Viewport offers two primary ways to display the contents of

your level:

•	 Perspective view: This view provides a 3D perspective, allowing you to navigate

and explore your level from different angles. It offers a lifelike representation of

your environment, making it ideal for assessing the visual aesthetics and spatial

relationships of your assets.

•	 Orthographic view: In contrast, this view offers a 2D representation by looking

directly down one of the main axes (X, Y, or Z). This view mode simplifies the

visualization of your level in a more structured and planar manner, making it

well-suited for precise alignment and adjustments.

•	 Viewport controls: Within the Level Viewport window, you’ll notice a set of buttons

located in the upper-left corner:

Figure 1.8 – The Viewport controls

In Figure 1.8, from left to right, these buttons include the following:

•	 Viewport options: Clicking this button reveals a menu with various Viewport-re-

lated options, enabling you to customize your viewing experience according to

your specific needs.

•	 Perspective: Toggles between the Perspective and Orthographic view modes,

allowing you to seamlessly switch between 3D exploration and 2D precision as

required.

•	 View Mode: The View Mode drop-down list within the Level Viewport of Unreal

Editor offers an array of versatile viewing modes to enhance the user’s experience

during project development. These modes serve various purposes, from assessing

the visual quality of a level with Lit Mode to simplifying the view with Unlit Mode

for precision alignment. These modes empower users to tailor their level’s visual

representation to their specific tasks, enhancing productivity within Unreal Editor.

For example, here is what each of these modes does:

•	 Detail Lighting Mode spotlights intricate lighting details

•	 Lighting Complexity Mode helps identify resource-intensive

lighting areas

Starting a Project in Unreal Engine18

•	 Shader Complexity Mode pinpoints shader-heavy regions

•	 Wireframe Mode simplifies geometry inspection

•	 Collision Mode reveals collision geometry

•	 Lightmap Density Mode visualizes the lightmap resolution distribution

•	 Quad Overdraw Mode identifies rendering inefficiencies

•	 Level of Detail (LOD) Mode allows previewing object detail levels

•	 Buffer Visualization provides access to rendering buffers for in-depth

analysis

•	 Show: Clicking this button reveals additional display options, providing control

over what elements are visible within the Viewport, aiding in efficient content

editing.

•	 Scalability: In this panel, you can control the quality balance of different render-

ing groups, such as View Distance, Anti-Aliasing, Shadow, Global Illumination,

Effects, or Foliage.

•	 Translation and snappings: Translation options provide control over object move-

ment, including freeform translation for unrestricted placement and switching

your gizmo between local and world coordinate systems. You can also control

grid snapping for precise alignment to a grid, angle, or scale values. You can also

control your camera speed.

Content Browser [4]
The Unreal Engine Content Browser is a central and indispensable tool for managing and or-

ganizing assets within your project. It serves as a comprehensive hub for importing, creating,

browsing, and manipulating various types of assets, including 3D models, textures, audio files,

materials, Blueprints, and more.

Figure 1.9 – The Content Browser

Chapter 1 19

Among its possibilities, the Content Browser helps us with the following:

•	 Asset management: It enables users to efficiently organize, search, and categorize assets.

You can create folders, subfolders, and collections to structure your assets logically, making

it easy to locate and access what you need.

•	 Asset creation: Users can create new assets directly within the Content Browser. Wheth-

er it’s a new material, Blueprint, or other asset type, this feature streamlines the asset

creation process.

•	 Import and export: Importing assets into your project is straightforward with the Content

Browser. Supported file formats include FBX, OBJ, WAV, PNG, and many others. You can

also export assets for use in other applications.

•	 Preview and thumbnail generation: It generates thumbnails for assets, providing visual

previews that aid in identifying assets quickly. This feature is particularly helpful when

working with large asset libraries.

•	 Asset information: Detailed information about each asset is readily accessible. You can

view properties, such as file size, import settings, and references, helping you manage

assets more effectively.

•	 Asset interactions: Drag-and-drop functionality simplifies asset placement within your

level or Blueprint graphs. You can easily reference and link assets to other parts of your

project, fostering efficient asset integration.

•	 Filtering and sorting: Robust filtering and sorting options enable users to refine their

asset searches based on various criteria, such as asset type, date modified, or keywords,

streamlining asset retrieval.

Bottom toolbar [5]
The bottom toolbar serves as a valuable resource within the Unreal Editor interface, offering con-

venient shortcuts to essential tools and features while also providing important status information.

The bottom toolbar can be found at the bottom of the editor window in Unreal Engine and looks

like this:

Figure 1.10 – The bottom toolbar

Starting a Project in Unreal Engine20

The bottom toolbar is divided into distinct sections, each contributing to an efficient workflow:

•	 Output Log: Positioned as a debugging tool, Output Log serves as a critical resource for

developers. It provides real-time feedback by displaying useful information, warnings,

errors, and debugging messages. This feature aids in identifying and resolving issues

during the development process, ensuring the smooth functioning of your project.

•	 Command Console: The Command Console, functioning akin to a traditional com-

mand-line interface, empowers users to trigger specific editor behaviors through the input

of console commands. This direct interaction with the editor allows for rapid execution

of various actions, streamlining the editing process.

•	 Derived Data: This section offers access to Derived Data functionality. Derived Data

encompasses preprocessed and optimized assets, including textures and shaders, that

enhance the efficiency of your project. It is an integral part of Unreal Engine’s asset man-

agement system, ensuring that assets are readily available in the desired format, contrib-

uting to optimal runtime performance.

•	 Source Control Status: This area provides critical information about the source control

status of your project, particularly if your project is connected to a source control system

such as SVN, Git, or Perforce. It serves as a visual indicator, displaying the current source

control status. If the project is not connected to source control, it will indicate Revision

Control is disabled.

Outliner [6]
The Outliner panel is a powerful organizational tool within Unreal Editor, offering a hierarchical

view of all the content present in your level. Typically situated in the upper-right corner of the

Unreal Editor window by default, it provides a visual representation of the assets and objects

that populate your project.

You can see an example of its representation in the following figure:

Chapter 1 21

Figure 1.11 – The Outliner panel

Beyond its fundamental role as a content hierarchy viewer, the Outliner panel offers several

valuable functionalities:

•	 Visibility control: You can efficiently manage the visibility of Actors within your level

by interacting with the associated eye button in Outliner. This allows you to instantly

toggle the visibility of specific Actors on or off, enhancing your control over the visual

representation of your scene.

Starting a Project in Unreal Engine22

•	 Contextual interaction: Right-clicking on an Actor in the Outliner panel opens an Ac-

tor-specific context menu. This menu grants you access to a range of additional operations

and settings that pertain to the selected Actor. It provides a convenient means to perform

targeted actions on individual assets, streamlining your editing process.

•	 Folder management: The Outliner panel extends its capabilities beyond Actors and assets.

It also facilitates the creation, movement, and deletion of content folders within your

project. This feature aids in maintaining a well-organized project structure, ensuring that

assets are logically grouped and easily accessible.

In essence, the Outliner panel not only offers an overview of your level’s content hierarchy but also

provides essential tools for asset visibility control, contextual interaction with individual Actors,

and efficient content folder management. By harnessing these capabilities, you can navigate and

manage your project with greater ease and precision within Unreal Engine.

Details panel [7]
The Details panel is a central component of Unreal Engine 5’s user interface, offering a wealth of

information and control over the properties and attributes of selected objects or Actors within

your project.

You can see an example of its representation in the following figure:

 Important note

Be aware that hiding the Actors in the level with the eye button will not hide

them while in Play Mode or Runtime. If you play, simulate, or render your

cinematic, you must disable its visibility or enable Actor Hidden in Game

from the Details panel.

Chapter 1 23

Figure 1.12 – The Details panel

Positioned typically on the right-hand side of the Unreal Editor interface, the Details panel pro-

vides a comprehensive set of features and functions, and it’s grouped normally without tabs such

as Level Details or World Settings, as shown in Figure 1.12.

Starting a Project in Unreal Engine24

The main functions of the Details panel are as follows:

•	 Property inspection: At its core, the Details panel serves as a hub for inspecting and man-

aging the properties of selected objects. When you select an Actor, asset, or component

in your level, the panel dynamically populates with relevant information, presenting a

detailed breakdown of its attributes. This includes essential properties such as transform-

ing data (position, rotation, and scale), mesh references, materials, and more.

•	 Customization and editing: Beyond passive property display, the Details panel empowers

users to customize and modify these attributes. It provides interactive fields and controls,

allowing for direct input and manipulation of object properties. For instance, you can

precisely adjust an Actor’s position or change its material assignment by interacting with

these fields, fostering granular control over your level’s elements.

•	 Component management: For complex Actors composed of multiple components (e.g.,

static meshes, lights, and cameras), the Details panel offers a hierarchical view of these

components. This hierarchy enables users to navigate and edit the properties of individ-

ual components within the context of the larger Actor, streamlining the editing process.

•	 Advanced features: Advanced users can leverage additional features within the Details

panel, such as Actor tagging, collision settings, replication parameters, and more. These

options provide fine-tuned control over object behavior and interactions in your project.

We’ve covered the basics of the Unreal Engine interface, touching on everything from the menu

bar and toolbar to the Content Browser and Details panel. This overview gives you a good starting

point for diving into game and application development with Unreal Engine.

Summary
In this chapter, we began with the installation of the Epic Games Launcher. We ensured that your

system met the required hardware specifications, covering both minimum and recommended

configurations, to optimize your Unreal Engine experience. Building a strong foundation, we

introduced you to key terminology within the Unreal Engine ecosystem, essential for effective

communication in the world of game development.

Chapter 1 25

Transitioning into practical application, we focused on project setup and templates, enabling

you to create and configure Unreal Engine projects tailored to your vision. From selecting target

platforms to fine-tuning ray tracing settings, you gained the skills needed to initiate your proj-

ects efficiently. Our exploration concluded with an in-depth tour of the Unreal Engine interface,

empowering you with insights into its various components and functions, setting the stage for

your creative journey.

In the next chapter, we dive into Quixel Bridge, Megascans, and Fab within Unreal Engine 5.

This immersive journey will guide you through asset selection, acquisition, and the process of

managing these libraries effectively. With a focus on technical efficiency and creative potential,

you’ll learn how to seamlessly integrate top-tier assets into your Unreal Engine projects. These

tools support a smoother workflow and offer reliable ways to enhance your game development

and world-building process.

Subscribe to Game Dev Assembly Newsletter!
We are excited to introduce Game Dev Assembly, our brand-new newsletter dedicated to every-

thing game development. Whether you’re a programmer, designer, artist, animator, or studio lead,

you’ll get exclusive insights, industry trends, and expert tips to help you build better games and

grow your skills. Sign up today and become part of a growing community of creators, innovators,

and game changers.

https://packt.link/gamedev-newsletter

Scan the QR code to join instantly!

https://packt.link/gamedev-newsletter

Starting a Project in Unreal Engine26

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

2
Quixel Bridge, Megascans,
and Fab

In this chapter, we will progress deeper into the technicalities of Unreal Engine 5 (UE5), turning

our focus to its integral asset management tools and plugins that are essential for project devel-

opment. Building on the foundational understanding established in the first chapter, this chapter

aims to dissect the functionalities of the Fab platform, the technical aspects of the Quixel Bridge

plugin, and the ever-growing Megascans library.

After exploring the ecosystem surrounding Unreal Engine and the set of acquisitions by Epic

Games, we will talk about Fab, the latest marketplace innovation from Epic Games. This section

will dissect its role in unifying the digital asset offerings from Quixel, Sketchfab, Unreal Engine

Marketplace (now Fab), and ArtStation Marketplace. Emphasis will be placed on navigating its

extensive catalog encompassing 3D models, materials, sound effects, VFX, and digital humans,

and integrating these assets into a unified workflow within Unreal Engine.

The Quixel Bridge plugin is a crucial component of the Unreal Engine ecosystem, providing a

user-friendly interface for accessing and managing the Megascans library directly within the

Level Editor. It enables advanced features such as asset browsing, targeted searches, and seamless

integration of assets, including MetaHumans, into Unreal Engine projects.

Following that, we delve into the specifics of the Megascans library. As a comprehensive reposi-

tory of high-fidelity 3D assets, tileable surfaces, and various environmental materials, Megascans

offers unparalleled realism and detail, which is pivotal for creating immersive environments. The

chapter will cover how Megascans assets are downloaded and imported into Unreal Engine, and

how they are organized and configured once added to a project.

Quixel Bridge, Megascans, and Fab28

Key topics to be covered in this chapter include the following:

•	 Evolution of the Unreal Engine ecosystem and understanding its acquisitions

•	 Introducing Fab – one engine, one marketplace

•	 Introducing Quixel Bridge

•	 Importing and integrating Megascans assets

•	 Understanding the imported resources

•	 Exercise 2.1: Adding a 3D asset from Quixel Bridge to Unreal Engine

•	 Exercise 2.2: Selecting and applying a material to a Static Mesh

•	 Why is asset configuration important in Quixel Bridge?

This chapter is designed to provide deep technical insight into these tools, focusing on both the

efficiency and quality of asset management and integration in UE5.

Technical requirements
The technical requirements for this chapter follow the same specifications as Chapter 1. Please

refer to that chapter, but let’s remember the recommended hardware for working with UE5 with

Lumen Global Illumination and Reflections and Nanite virtualized geometry:

•	 Operating system: Windows 10 64-bit version 1909 revision .1350 or higher, or versions

2004 and 20H2 revision .789 or higher. Support for DirectX 12 Agility SDK

•	 Processor: Quad-core Intel or AMD, 2.5 GHz or faster

•	 Memory: 8 GB RAM

•	 Software Ray Tracing: This feature may require a video card using DirectX 11 with support

for Shader Model 5

•	 Hardware Ray Tracing: This requires Windows 10 build 1909.1350 or newer with DirectX

12 support and specific compatible graphics cards (e.g., NVIDIA RTX-2000 series or newer,

AMD RX-6000 series or newer, Intel® Arc™ A-series graphics cards or newer)

•	 Internet access: An internet connection is required to download the plugins and additional

content required for this chapter

Chapter 2 29

Evolution of the Unreal Engine ecosystem and
understanding its acquisitions
Let’s take a small step back to understand the dynamic and ever-expanding universe of the Unreal

Engine ecosystem. Its main goal is to be a comprehensive suite of tools and platforms that collec-

tively redefine the landscape of digital creation. While many resources within the ecosystem are

free to use, such as Quixel assets when working inside Unreal Engine, other tools and platforms

follow their own licensing or marketplace models.

At its core, Unreal Engine provides a powerful and versatile engine for game development, virtual

production, and real-time 3D creation. However, the ecosystem extends far beyond the engine

itself, encompassing a range of acquisitions and integrations designed to empower creators

across various disciplines.

To contextualize the evolution of the Unreal Engine ecosystem, it is crucial to examine its stra-

tegic expansions and acquisitions closely. The subsequent subsections covering Unreal Engine

Marketplace (now known as Fab), Quixel, ArtStation, and Sketchfab serve as key pillars in un-

derstanding how Epic Games has enhanced Unreal Engine’s capabilities and offerings. Each

platform, with its unique contributions, has been integral to broadening the scope of tools and

assets available to creators.

Unreal Engine Marketplace (now Fab)
Launched on September 4, 2014, the Unreal Engine Marketplace stood as a cornerstone in digital

creation, offering a vast array of art, assets, and tools tailored for Unreal Engine use. It democ-

ratized game development and digital art by providing accessible, high-quality resources. The

Marketplace fostered a vibrant community and laid the groundwork for what would become

Fab, Epic Games’ unified platform that now integrates Marketplace, Quixel, and other Epic asset

libraries into a single ecosystem (see the Introducing Fab – one engine, one marketplace section). Its

inception marked a significant milestone in Unreal Engine’s evolution as a comprehensive tool

for real-time 3D creation.

Quixel
On November 12, 2019, a significant announcement was made at the Unreal Engine Academy in

London by Epic Games: Quixel was to become a part of its expansive ecosystem. This integration

marked a pivotal moment for Unreal Engine users, as it meant unrestricted access to the entire

Megascans library at no additional cost.

Quixel Bridge, Megascans, and Fab30

ArtStation
On April 30, 2021, Epic Games announced the acquisition of ArtStation, a leading platform in the

digital artist community. This significant move integrates ArtStation’s extensive network of artists

and its rich repository of creative content into the Epic Games ecosystem. The acquisition is aimed

at empowering artists across various disciplines, providing them with more resources and tools.

Sketchfab
On July 21, 2021, Epic Games and Sketchfab announced a significant development in the 3D content

creation and distribution landscape. Sketchfab, known for its extensive web-based service that

simplifies the discovery, editing, purchase, and sale of 3D content, joined the Epic Games family.

Sketchfab has a robust collection of over 4 million 3D assets and comprehensive technology in-

tegrations across major 3D tools and platforms. This move is a strategic step toward expanding

the creator ecosystem and advancing the vision of an interconnected metaverse.

 Note

If you’d like to explore more about this integration and its implications, we recom-

mend checking out the following link: https://www.unrealengine.com/en-US/

blog/epic-games-and-quixel-join-forces-to-empower-creators.

 Note

For more detailed information and insights on this acquisition, check out this

link: https://www.epicgames.com/site/en-US/news/artstation-is-now-

part-of-epic-games.

 Note

For more information about Sketchfab, visit the following link: https://www.

epicgames.com/site/en-US/news/sketchfab-is-now-part-of-epic-games.

https://www.unrealengine.com/en-US/blog/epic-games-and-quixel-join-forces-to-empower-creators
https://www.unrealengine.com/en-US/blog/epic-games-and-quixel-join-forces-to-empower-creators
https://www.epicgames.com/site/en-US/news/artstation-is-now-part-of-epic-games
https://www.epicgames.com/site/en-US/news/artstation-is-now-part-of-epic-games
https://www.epicgames.com/site/en-US/news/sketchfab-is-now-part-of-epic-games
https://www.epicgames.com/site/en-US/news/sketchfab-is-now-part-of-epic-games

Chapter 2 31

Overall, Unreal Engine is a powerful, flexible platform for digital creation. From the foundational

engine to the diverse and strategic integrations and creations, such as the Unreal Engine Mar-

ketplace (now Fab), ArtStation, Sketchfab, Twinmotion, and RealityCapture, the ecosystem is

crafted to address a wide spectrum of creative needs.

This broader framework also includes advanced technologies for creating photorealistic digital

humans, exemplified by the MetaHuman project. This highlights Epic Games’ commitment to

pushing the frontiers of technology and creativity. This ecosystem not only advances the state of

the art in digital tools but also nurtures an ever-growing community of artists, developers, and

creators. It stands as a testament to the limitless possibilities of digital innovation, inviting users

to explore, create, and redefine the boundaries of digital art and technology.

Transitioning from the overview of the Unreal Engine ecosystem and its notable acquisitions,

we’ll now focus on a detailed exploration of Fab, Epic Games’ unified marketplace platform that

consolidates asset sources such as Quixel, Sketchfab, and ArtStation.

Introducing Fab – one Engine, one marketplace
Fab, a groundbreaking open marketplace developed by Epic Games, represents a significant uni-

fication of several key digital asset platforms. It amalgamates the resources from Sketchfab, Quixel

Megascans, MetaHuman, ArtStation, and Unreal Engine Marketplace into a singular, cohesive

platform. The integration of Fab within Unreal Engine is set to offer a user experience akin to

the current functionality of Bridge, streamlining the process of selecting and integrating content

directly into your scene.

The Epic Games team has envisioned Fab as a multiplatform tool, capable of hosting content from

all the tools it owns and making it easier for users to work not only in UE5 and Unreal Editor for

Fortnite (UEFN), but also in other DCC tools and applications. The most common way to work

with Fab is through its website (https://www.fab.com/). That said, it also includes a plugin that

integrates directly into Unreal Engine.

https://www.fab.com/

Quixel Bridge, Megascans, and Fab32

In Figure 2.1, we can see Fab’s main page and its structure:

Figure 2.1 – Fab’s landing page

At a glance, we can get an idea of the platform’s structure. On the left-hand side, there is the

Discover panel, where resources are organized into channels, which group the various platforms

currently supported by Fab (such as Quixel, Sketchfab, and ArtStation). In the central area, the

content is presented in a simplified way, showcasing the featured content and top categories

from the past month.

Searching for assets on Fab
While an Epic Games account is not required to browse the platform and view the available

content, it is essential in order to download both free and paid assets.

To sign in or create an account, click the user icon in the top-right corner of Fab. For help,

see https://www.epicgames.com/help/en-US/c-202300000001645/c-202300000001752/

a202300000018101. The search bar is available on all Fab pages. Clicking it lets you start filtering

content. As you type, a popup suggests filters such as game engines, tags, and publishers.

https://www.epicgames.com/help/en-US/c-202300000001645/c-202300000001752/a202300000018101
https://www.epicgames.com/help/en-US/c-202300000001645/c-202300000001752/a202300000018101

Chapter 2 33

You can refine your search using Boolean operators such as AND and OR for more accurate results.

For deeper filtering, use the side panel and filter menu. The panel updates dynamically with a

Search In section that includes Products and Publisher.

Figure 2.2 shows how the search bar and filters work together to display relevant content:

Figure 2.2 – Search and filter menus

We could spend hours browsing assets on Fab, especially with filters by platform, asset type, price,

and more. But what exactly can we find on a product page?

Browsing and acquiring assets on Fab
Let’s take POLY – Medieval Camp by Animpic Studio (https://www.fab.com/listings/436d467a-

6955-4aac-be0d-a05c99966ea2) as an example. Clicking on it opens the product page.

In the center, there’s a gallery with screenshots or videos and a description of the asset. On the

right, you’ll find a summary with key details, such as publisher, rating, pricing, and licensing, as

shown in Figure 2.3:

https://www.fab.com/listings/436d467a-6955-4aac-be0d-a05c99966ea2
https://www.fab.com/listings/436d467a-6955-4aac-be0d-a05c99966ea2

Quixel Bridge, Megascans, and Fab34

Figure 2.3 – Product page

Fab provides access to both free and paid digital assets through an intuitive interface. From your

wishlist, you can hover over any item and click the cart icon to select a license. Paid items are

added to your cart, while free items can be added directly to your library. To remove a product

from your wishlist, simply click the trash icon and an undo option will briefly appear.

To purchase a product, open its page, choose a license from the drop-down menu, and click

Buy Now or Add to Cart. If required, you’ll be prompted to accept the latest End User License

Agreement (EULA). After reviewing your cart, proceed to checkout and follow the payment steps.

Once the order is complete, you’ll receive confirmation and be able to download your products

from the listing or from My Library.

Unreal Engine and UEFN products must be downloaded through the Fab plugin or the Epic

Games Launcher.

Free content on Fab is easy to find and claim. You can filter by Price | Free or explore the

Limited-Time Free section under Discover | Offers. Products may also appear under the Free

Content category or on dedicated promotional pages.

To acquire a free asset, accept the EULA and either download the asset directly or add it to your

library.

Chapter 2 35

My Library and Downloads
All acquired products are stored in the My Library tab on Fab, which provides a centralized view

of your assets. From this section, you can browse your collection, use the search bar, and apply

filters to quickly locate specific items.

Figure 2.4 – My Library

While all available formats provided by the creator can be downloaded directly from the Fab

website, there are additional methods for accessing and managing content.

 Note

While downloads can be anonymous, signing in is required to save items to your

library for future use. In Figure 2.4, you can see all acquired items stored in the My

Library section.

Quixel Bridge, Megascans, and Fab36

Using Fab with Unreal Engine
For assets intended for Unreal Engine, files are also available through the Fab Library in the Epic

Games Launcher when using the same Epic Games account. To ensure products appear in the

Launcher, you must first add them to your Fab Library. Once added, the assets become accessible

within the Launcher’s Library section, allowing you to easily integrate them into your Unreal

Engine projects, as we can see in Figure 2.5:

Figure 2.5 – Epic Games Launcher – Fab Library

Once installed, Fab can be accessed within Unreal Engine from the top menu via Window | Fab,

or through the Content Drawer by clicking the Fab icon on the toolbar (see Figure 2.6). Sample

projects require adding the asset to your library and downloading it through the Launcher, while

non-project-based content can be imported directly into an open project.

 Note

If you have UE version 5.3 or 5.4 installed, you’ll need to download the plugin man-

ually from the Fab Library in the Epic Games Launcher. For new engine installations

or updates, the plugin is included automatically.

Chapter 2 37

Figure 2.6 – Fab tool location and interface inside Unreal Engine

Fab represents a significant stride in digital asset management and integration, engineered by Epic

Games. As a unified marketplace, it brings together an array of assets from different platforms in

the Unreal Engine ecosystem. This integration within Unreal Engine mirrors the functionality of

Quixel Bridge, providing a streamlined and efficient process for selecting and importing diverse

digital assets directly into project scenes. Users can also inspect details such as topology, textures,

and animations through the integrated Sketchfab 3D Viewer, ensuring well-informed decisions

when selecting content.

With a user-friendly interface and a vast library of high-quality assets, Fab streamlines the work-

flow for Unreal Engine users. Its integration reflects Epic Games’ ongoing commitment to em-

powering creators and enhancing the Unreal Engine ecosystem.

One of the key technologies behind Fab’s ecosystem is Quixel, whose tool, most notably Quixel

Bridge, forms a fundamental part of Unreal Engine’s real-time world-building pipeline. In the

next section, we’ll explore how Quixel Bridge powers high-quality asset workflows and plays a

central role in environment creation within Unreal Engine.

Quixel Bridge, Megascans, and Fab38

Introducing Quixel Bridge
In this section, we will shift our focus to practical application, specifically working with Quixel

Bridge within the Unreal Engine environment. To begin this hands-on exploration, the first step

is to open your Unreal Engine project. Quixel Bridge, seamlessly integrated into Unreal Engine, is

a powerful portal to an extensive library of high-quality assets. This integration streamlines the

process of importing photorealistic 3D assets directly into your project, enhancing both efficiency

and the visual quality of your work.

Enabling Quixel Bridge for Unreal Engine
Quixel Bridge is incorporated by default within your installation of UE5. To verify and activate

the Quixel Bridge plugin in your Unreal Engine environment, follow these steps:

1.	 Navigate to Edit and then select Plugins from the drop-down menu.

2.	 In the Plugins window, utilize the search functionality by typing Quixel Bridge into

the search bar.

3.	 Upon locating the Quixel Bridge plugin, ensure its activation by clicking the checkbox

next to it, as shown in Figure 2.7:

Figure 2.7 – Searching for the Quixel Bridge plugin

Chapter 2 39

4.	 In instances where the Quixel Bridge plugin is not listed in your Plugins window, an

additional installation step through the Epic Games Launcher may be necessary. To do

this, take the following steps:

1.	 Open the Epic Games Launcher and navigate to the Library section.

2.	 Within this area, scroll to the Fab Library section and enter bridge in the search

bar, as seen in Figure 2.8.

3.	 Upon finding Quixel Bridge in the search results, select Install to Engine. This

will integrate the plugin with your Unreal Engine.

Figure 2.8 – Epic Games Fab Library

After completing the installation, relaunch Unreal Engine to enable the newly installed Quixel

Bridge plugin by returning to Edit | Plugins.

Launching Quixel Bridge in Unreal Engine
Within the Unreal Engine editor, Quixel Bridge is accessible from multiple locations, offering flex-

ibility in how you integrate assets into your projects. Here are the methods to access Quixel Bridge:

•	 One straightforward method is through the content shortcuts—a quick and efficient

entry point.

•	 Alternatively, you can access Quixel Bridge via the top menu by selecting Window and

then choosing Quixel Bridge from the drop-down options.

Quixel Bridge, Megascans, and Fab40

•	 Another convenient pathway is in the Content Browser; simply right-click on an empty

space and navigate to the Get Content section to find Quixel Bridge.

We can see here the three different options to access Quixel Bridge:

Figure 2.9 – Locations from where Quixel Bridge is accessible

It’s recommended to try each of them, as this will allow you to set your preference for the future.

Using Quixel Bridge for Unreal Engine
Quixel Bridge, tailored for integration with Unreal Engine, is designed to be compatible across

multiple operating systems, including Windows, macOS, and Linux.

A key operational requirement for Quixel Bridge is an active internet connection. This connectivity

is essential for both displaying and downloading assets from its online content library. However,

Quixel Bridge also accommodates scenarios where an internet connection might not be available.

In such instances, you can still access your locally stored content. This is achieved by navigating

to the Local tab, which is conveniently located in the left navigation pane of Quixel Bridge. Here,

you can browse and utilize assets that have been previously downloaded and stored on your disk,

ensuring that your workflow remains uninterrupted even when off﻿line.

Chapter 2 41

Browsing the content
Within Unreal Engine, Quixel Bridge operates as a versatile floating window, offering a high de-

gree of adaptability to suit your workflow. Its interface is designed for customization, allowing

you to resize and reposition the window according to your convenience and screen layout. We

can see the Quixel Bridge interface here as an example:

Figure 2.10 – Quixel Bridge – asset selection and details

At the core of Quixel Bridge’s user interface is a search bar, which you can use to swiftly search

for specific items across various categories. To further enhance your search, Quixel Bridge in-

corporates a filter bar, equipped with a range of specific filters, such as asset type, color, biome,

state, and size. This filter bar can be easily shown or hidden by clicking the filter icon located in

the top-right corner.

On the left side of the Quixel Bridge panel, a series of buttons provides access to different tabs,

each serving a distinct purpose:

•	 Home: This tab is organized into sections displaying the latest collections, trending assets,

and the newest uploads across all categories. It features a structured category tree with

multiple levels of subcategories, listing all available asset types. Filtering by category and

subcategory is also available here.

Quixel Bridge, Megascans, and Fab42

•	 Collections: Here, you will find curated content, including references and renders across

various biomes, essentials, architectural selections, tutorial assets, and community col-

lections.

•	 MetaHuman: For users engaging with the MetaHuman Creator app (https://metahuman.

unrealengine.com/), the My MetaHumans page under the MetaHumans tab in Quixel

Bridge offers access to created characters. These can be downloaded and seamlessly in-

tegrated into your projects.

•	 Favorites: Any asset within Quixel Bridge can be marked as a favorite for quick and easy

future access. To favorite an asset, simply hover over it and click the heart icon.

•	 Local: This section displays all assets that have been downloaded and are available on

your machine, providing online and offline access to your local repository.

After understanding the main tabs, let’s move on to working with Quixel Bridge assets.

Assets
In Quixel Bridge, selecting an asset opens an information panel that provides a detailed overview

of its characteristics. This panel helps assess the asset’s technical aspects and suitability for your

project. Icons offer quick insights, such as file size, important for resource management and

whether a texture is tileable, which is key for creating seamless environments.

The panel also shows related assets, aiding in finding visually consistent or complementary

options and streamlining selection.

At the bottom of the right panel is a control for selecting the asset’s download resolution.

Positioned at the bottom of the asset’s right panel is a vital control for selecting the download

resolution of the asset, as shown in Figure 2.11:

https://metahuman.unrealengine.com/
https://metahuman.unrealengine.com/

Chapter 2 43

Figure 2.11 – Asset information from selected object in Quixel Bridge

This functionality lets you customize assets to fit your project’s needs, offering resolution options

that balance visual quality and performance. After selecting a resolution, you can download the

asset or add it directly to your project.

Download settings
In the context of asset management within Quixel Bridge for Unreal Engine, it is essential to be

aware of the default storage location for downloaded assets. These locations vary depending on

the operating system you are using:

•	 For Windows users, assets are stored in C:\Users\user\Documents\Megascans Library

•	 On macOS, the default path is ~/Documents/Megascans Library

•	 For Linux, assets are similarly placed in ~/Documents/Megascans Library

Quixel Bridge, Megascans, and Fab44

Understanding asset storage is key, as high-quality downloads can quickly consume disk space.

A large library may lead to significant storage use, so it’s important to ensure sufficient space to

avoid workflow disruptions.

Should you need to alter the default storage path for your assets, Quixel Bridge provides a straight-

forward method. To modify this setting, click on the user icon located in the top-right corner of

the Quixel Bridge window and select Preferences:

Figure 2.12 – Quixel Bridge Preferences

In the Preferences dialog, you will find an option to enter a new library path. Here, it specifies

the desired destination for saving your future assets. After entering the new path, confirm the

change by clicking Save. This adjustment allows you to customize the storage location of your

assets, ensuring it aligns with your project organization and disk space management strategies.

Resolution
In Quixel Bridge, you are equipped with the capability to meticulously select the quality of each

asset, be it a surface, decal, or any other type, according to the specific requirements of your project.

This feature is fundamental in optimizing the balance between visual fidelity and performance

efficiency in your projects.

Chapter 2 45

All 3D assets within Quixel Bridge are made available in the UAsset format, a native Unreal Engine

asset format that ensures seamless integration and compatibility. These 3D assets are offered in

a range of resolutions to cater to diverse project needs. The available resolutions include Nanite,

high, medium, and low. The Nanite resolution represents the cutting-edge of Unreal Engine’s

rendering technology, enabling highly detailed and complex geometries with minimal perfor-

mance impact. The choice between high, medium, and low resolutions provides further flexibility,

allowing you to choose an optimal balance of asset detail and resource allocation based on your

project’s scope and hardware capabilities.

Similarly, other asset types available in Quixel Bridge, such as surfaces, 3D plants, decals, and

imperfections, are also accessible in multiple resolutions. These include the highest, high, medium,

and low options, providing a spectrum of quality levels to align with various artistic visions and

technical constraints. The highest resolution offers unparalleled detail and texture depth, ideal

for close-up shots or high-resolution renders. On the other hand, lower resolutions are more

suited for background elements or performance-intensive scenarios.

This granular control over asset resolution in Quixel Bridge empowers creators to tailor their asset

choices precisely, ensuring that each element within their Unreal Engine project is optimized for

both visual quality and performance efficiency.

Export settings
In Quixel Bridge, each asset’s specific export settings are accessible via the asset’s information

panel, providing you with precise control over how assets are exported or integrated into your

Unreal Engine project.

To access these settings, click on the export settings button between the quality selector and the

Download button. This opens the Export Settings dialog box.

Figure 2.13 – Export quality setting

Quixel Bridge, Megascans, and Fab46

It is imperative to configure these settings prior to adding an asset to your scene to ensure optimal

integration and alignment with your project requirements. The key features within the Export

Settings dialog box include the following:

•	 Auto-Populate Foliage Painter: When enabled, this option automatically updates the

foliage editor’s asset list in your project with the latest imported assets. This feature is

particularly useful for scatter and plant assets, streamlining the process of adding nat-

ural elements to your scene. It is essential to activate this setting before exporting these

types of assets.

•	 Apply to Selection: Activating this setting applies the exported material directly to ob-

jects currently selected in your scene. This is a convenient tool for quickly assigning new

materials to specific elements within your project.

•	 Master Material Overrides: This section grants the flexibility to substitute the default

master materials provided by the plugin with custom master materials of your choice. It

offers a higher degree of customization, allowing for more personalized and unique asset

appearances in your project.

•	 Material Blend Settings: Here, you can blend materials using those already imported into

your Content Browser. The Quixel Bridge plugin includes a vertex blend shader, which is

utilized for this material blending process. This functionality is instrumental in achieving

complex material effects, such as transitions between different terrain types or the inte-

gration of various surface textures, enhancing the realism and visual depth of your project.

At this point, we’ve learned how to move around the Quixel Bridge interface. Now we’ll under-

stand how to import the library assets into our Unreal Engine project.

Importing and integrating Megascans assets
Importing Megascans assets into Unreal Engine is different from importing other 3D models,

materials, and textures, but it is not complicated.

Let’s look at two methods of bringing Megascans resources into our scene:

•	 Method 1 – direct drag and drop: This approach involves directly dragging an asset from

Quixel Bridge into your Unreal Engine scene. This method is intuitive and efficient, par-

ticularly when working in a dynamic design process. If the asset has not been previously

downloaded, Quixel Bridge facilitates an automatic download, adhering to the resolution

specified in the asset’s information panel.

Chapter 2 47

•	 Method 2 – download and add to Content Browser: For more controlled asset man-

agement, you can opt to download and then add assets to your scene as separate steps.

To download an asset, select it in the grid view within Quixel Bridge and click the green

Download button. Upon completion of the download, you can then add the asset to your

scene by clicking the Add button. This is shown in Figure 2.14:

Figure 2.14 – Download and add to the project

The downloaded content will then appear in the Megascans folder inside the Content

Browser, ready for use in your project.

Each of these methods provides a tailored approach to asset integration, ensuring that whether

you require immediate drag-and-drop functionality or prefer organized, step-by-step asset ad-

dition, Quixel Bridge accommodates your workflow in Unreal Engine.

Quixel Bridge, Megascans, and Fab48

When you download an asset for the first time from Quixel Bridge to Unreal Engine, Bridge au-

tomatically creates specific folders in your Content Browser:

•	 Megascans folder: This folder acts as the primary storage location for all assets downloaded

from Quixel Bridge, organizing them within your Unreal Engine project.

•	 MSPresets folder: This contains all the template master materials necessary for rendering

the downloaded assets in your scene. These preset materials are important for ensuring

that the assets display correctly with their intended textures and shading.

So far, we have worked directly with Quixel Megascans resources, which are by default correct-

ly structured, named, and organized into folders. This organizational scheme serves as a good

example of how to structure assets for future projects. Let’s take a closer look at how this folder

structure works.

Understanding the imported resources
When an asset is downloaded from Quixel Bridge into Unreal Engine, it is systematically organized

within the Megascans folder in the Content Browser. This folder serves as a centralized repos-

itory for all downloaded assets, ensuring efficient asset management and accessibility. Within

the Megascans folder, each asset is stored in its respective subfolder, maintaining a structured

and navigable hierarchy.

For 3D assets, each subfolder typically contains several key components:

•	 Static Mesh: This is the 3D model of the asset, representing its geometric structure.

•	 Material Instance: Accompanying the Static Mesh is a Material Instance, which is a variant

of the master material, adjusted and optimized for the specific asset.

•	 Textures: These are the image files that define the surface appearance of the asset, such

as its color, reflectivity, and surface detail.

We’ll understand these in more detail later in this section.

 Important note

During the asset download process, a placeholder or a lower version of the asset is

initially visible in Unreal Engine. Once the final high-resolution asset is fully down-

loaded, it automatically replaces the placeholder in your scene. This mechanism

ensures a continuous workflow, allowing you to position and scale assets while their

final versions are being retrieved.

Chapter 2 49

The following figure shows the standard file structure you get once your 3D asset is downloaded: a

3D Static Mesh, a Material Instance, and specific textures. The Material Instance parent material

will be based on a Megascans material defined by you, or the default one.

Figure 2.15 – Quixel Bridge 3D asset in the Content Browser

It is necessary to ensure that downloaded assets from Quixel Bridge are ready to use, with their

materials and textures pre-assigned. This automatic setup contrasts with the process for exter-

nally imported or self-created assets, where additional steps are required. For such assets, you

must manually add any additional content, including textures, and create the necessary material

or Material Instance.

Following the introduction of assets from Quixel Bridge into your Unreal Engine project, here

we will delve into the specifics of working with these different asset types. This exploration will

provide a deeper understanding of the asset integration process and how to effectively utilize

the comprehensive content provided by Quixel Bridge in your projects.

 Important note

Depending on the method of download, a Preview folder might be generated. This

folder temporarily houses lower-quality versions of the assets while their high-res-

olution counterparts are being downloaded. This feature is particularly useful for

maintaining workflow continuity, allowing for the preliminary placement and ad-

justment of assets in the scene before their final versions are fully integrated.

Quixel Bridge, Megascans, and Fab50

Static Mesh
The Static Mesh Actor in Unreal Engine is a basic form of Actor used to display 3D meshes with-

in a Level. The term static implies that the mesh’s geometry is unchanging, not that the Actor is

immobile. However, in reality, Static Mesh Actors can be moved or otherwise modified during

gameplay.

They are commonly employed to construct game environments and worlds. Unreal Engine in-

cludes some default Static Mesh Actors, but additional meshes can be downloaded from Quixel

Bridge or imported from other 3D applications.

Any time you open or double-click a Static Mesh, the Static Mesh Editor will open, showing the

selected Static Mesh:

Figure 2.16 – Static Mesh view from a Megascans downloaded horse saddle

In the Static Mesh Editor, you can view parameters like Level of Detail (LOD), collision, and

lightmap settings under the Details panel. Adjusting these helps optimize performance and

lighting accuracy.

Material and Material Instance
Understanding the concepts of material and Material Instance is crucial for effective asset creation

and management in Unreal Engine. Although we will dive deeper into these concepts in Chapter

8, it’s important to have a basic understanding of them now.

Chapter 2 51

Materials
A material in Unreal Engine fundamentally determines the surface properties of objects in your

scene. Conceptually, think of a material as the “paint” that gives a mesh its visual appearance.

More technically, materials instruct the render engine on how the surface should interact with

light, encompassing aspects such as color, reflectivity, texture, bumpiness, and transparency.

These properties are calculated using a combination of input data from textures and node-based

material expressions, alongside inherent material properties.

Figure 2.17 shows the Material preview and connected texture nodes:

Figure 2.17 – Material and Material Instance view

We can see the preview of the material in the top left, and in the graph, the different textures that

will be connected to the material attributes.

Quixel Bridge, Megascans, and Fab52

Material instancing
Material instancing, on the other hand, offers a method to alter a material’s appearance without

the need for expensive recompilation. Unlike a standard material, which requires recompiling

for any change (a process that must be completed before gameplay), a parameterized material

can be edited through an instance, bypassing the need for recompilation. This approach not only

enhances the workflow but also can contribute to improved material performance.

In Figure 2.18, we can see the structure of exposed parameters that allow real-time adjustments

to the Material Instance:

Figure 2.18 – Material and Material Instance view

Chapter 2 53

Textures
Textures in Unreal Engine serve as image assets used predominantly in materials, but they can

also be applied in other contexts, such as in a heads-up display (HUD).

Within materials, textures are mapped to surfaces to which the material is applied. They can be

used directly for inputs such as Base Color, Normal Map, or Opacity Mask, employed as masks,

or utilized in other calculations using their RGBA values.

A single material may incorporate multiple textures, each serving a different function. For ex-

ample, a basic material might include a Base Color texture, a Specular texture, and a Normal

Map texture. Additionally, it might feature maps for Emissive and Roughness packed within the

alpha channels of these textures. This practice of packing multiple values into a single texture

optimizes performance by saving on draw calls and reducing disk space requirements, while still

providing a wide range of visual effects.

In the following figure, we can see a Base texture opened with the Texture Properties Editor:

Figure 2.19 – Texture view

Quixel Bridge, Megascans, and Fab54

In conclusion, the understanding and application of Static Meshes, materials and Material In-

stances, and textures in Unreal Engine are pivotal in the creation of engaging and realistic 3D

environments.

Let’s have a quick recap of the terms we discussed in this section:

•	 Static Meshes: Core 3D building blocks in Unreal Engine that provide stable geometry

and flexibility for manipulation within the game world, essential for creating detailed

and immersive scenes.

•	 Materials and Material Instances: Define visual and interactive surface properties. Ma-

terials add realism to meshes, while Material Instances allow for efficient, non-destruc-

tive edits and quick adjustments without recompilation, optimizing both workflow and

performance.

•	 Textures: Add layers of detail and realism to materials, enhancing visual effects and sup-

porting complex calculations. This is essential for achieving high-quality visuals and

contributing to the project’s aesthetic impact.

By integrating Quixel Bridge into Unreal Engine, creators gain access to high-quality 3D assets

that can be imported seamlessly for game development, architectural visualization, or cinemat-

ic storytelling. This asset pipeline enables the quick implementation of photorealistic models,

textures, and materials, helping to build more immersive environments. However, it’s essential

to manage assets carefully to avoid issues such as disorganized file structures or mismatched

resolutions that could impact performance and visual consistency. Ensuring assets are properly

categorized within the Content Browser and optimizing resolutions for specific use cases is

crucial for maintaining a balance between performance and visual fidelity. Mastering the import

process and efficient asset management will streamline your workflow and improve the overall

quality of your Unreal Engine projects.

In the next section, we’ll complete a practical exercise to apply what we’ve learned about Quixel

Bridge and asset import workflows.

 Note

For more in-depth guidance on asset management, refer to Chapter 4.

Chapter 2 55

Exercise 2.1: Adding a 3D asset from Quixel Bridge
to Unreal Engine
Let’s engage in a practical exercise to consolidate our understanding of working with Quixel

Bridge and Unreal Engine. We will download a 3D asset from Quixel Bridge and position it within

the main template map:

1.	 Start by launching Quixel Bridge. This is where you’ll browse and select the asset you

wish to add to your Unreal Engine project.

2.	 In the left menu of Quixel Bridge, follow this path – 3D Assets | Interior | Decoration |

Statuette. This will direct you to a specific category of assets.

3.	 From the displayed options in the library grid, select Female Bust, as shown in the fol-

lowing figure:

Figure 2.20 – Exercise 01 – Quixel Bridge 3D asset import

4.	 You have two methods to add the asset to your Unreal Engine project:

1.	 Method 1 (drag and drop): Directly drag and drop the asset from Quixel Bridge

into your Unreal Engine scene (read step 5 for placement suggestions). If the as-

set has not been downloaded previously, it will automatically download in the

resolution selected in the asset information panel.

Quixel Bridge, Megascans, and Fab56

2.	 Method 2 (download then add): Download the asset by clicking the Download

button on the asset’s Details panel. Once downloaded, add it to your scene from

the Content Browser.

5.	 Once the asset is in your Unreal Engine scene, you can place it at a location of your choice.

Two suggested placements are provided for guidance in Figure 2.21, but feel free to position

it as per your creative preference.

Figure 2.21 – Exercise 01 – Placement suggestions

6.	 After downloading, navigate to the Content Browser in Unreal Engine. Here, under

Megascans | 3D_Assets | Female_Bust_Statuette_[Bridge Code], you will find the Static

Mesh, Textures, and Material Instance associated with the Female Bust asset you just

added.

7.	 Compare your scene with the example provided in Figure 2.21 to ensure that the asset has

been correctly integrated into your Unreal Engine project.

This exercise demonstrates the seamless process of integrating high-quality 3D assets from Quixel

Bridge into Unreal Engine, enhancing your scene with professionally crafted elements. It also

familiarizes you with asset management within the Unreal Engine interface.

Chapter 2 57

Exercise 2.2: Selecting and applying a material to a
Static Mesh
In this exercise, we will focus on selecting and applying a material to a Static Mesh within Unreal

Engine, using a surface from Quixel Bridge. To do so, follow these steps:

1.	 Open Quixel Bridge to start browsing for materials.

2.	 Now, browse for a material:

1.	 In the left menu, go to Collections | Environment | Historic | Roman Empire.

2.	 Use the search bar to refine your search. Type in surface and floor.

3.	 Select Roman Brick Floor, as shown in the following figure:

Figure 2.22 – Exercise 02 – Quixel Bridge surface import

3.	 Download the Roman Brick Floor material. Wait until the download is complete before

proceeding.

4.	 Next, locate and create a Material Instance:

1.	 In Unreal Engine, navigate to the folder where the material is downloaded.

2.	 Locate MI_Roman_Brick_Floor.

3.	 Right-click on its thumbnail and select Create Material Instance from the pop-up

window.

Quixel Bridge, Megascans, and Fab58

5.	 Drag and drop the newly created Material Instance onto the floor of your atrium, or the

targeted Static Mesh in your scene.

6.	 Then, double-click the new Material Instance to open its settings:

1.	 Under 00 - Global, do the following:

1.	 Enable Tiling/Offset, expand the dropdown, and modify these values:

•	 Tiling X: 35

•	 Tiling Y: 17

2.	 Optionally, for rotation, check Rotation Angle and set it to 0.25 (this ro-

tates the material by 90 degrees)

2.	 For normal map adjustment, under 05 – Normal, check Normal Strength and

modify the value as desired (it’s generally recommended to keep values between

0 and 1 to maintain realism and avoid overly exaggerated textures).

Figure 2.23 – Exercise 02 – Material Instance customization

Chapter 2 59

7.	 After adjusting the values in the Material Instance, your scene should now align with the

desired aesthetic. The material applied to your Static Mesh should enhance the scene’s

realism and visual appeal.

Figure 2.24 – Exercise 02 – New Material Instance and final result

This exercise demonstrates the process of selecting, downloading, and applying a material from

Quixel Bridge to a Static Mesh in Unreal Engine. By adjusting the tiling, rotation, and normal

strength properties, you can significantly enhance the material’s appearance, making it fit seam-

lessly within your scene. Such adjustments are vital in achieving the desired visual impact and

realism in your environment, showcasing the power of material customization in Unreal Engine.

As you proceed through the next chapters, these skills will be expanded upon, allowing for even

greater control and refinement in your projects. But before we move on, it’s worth understanding

why proper asset setup in Bridge is so important.

Quixel Bridge, Megascans, and Fab60

Why is asset configuration important in
Quixel Bridge?
Proper asset configuration within Quixel Bridge plays a crucial role in the successful develop-

ment of real-time projects in Unreal Engine. While it may be tempting to rely on default settings,

overlooking specific parameters such as texture resolution, material setup, or mesh quality can

lead to the following:

•	 Performance issues

•	 Visual inconsistencies

•	 Wasted development time

One of the first key decisions is choosing the quality level of the assets you import. Quixel Bridge

allows users to download assets in high, medium, or low quality, affecting not only the resolu-

tion of textures but also the complexity of the Static Meshes. This flexibility is especially useful

in the early stages of development, where working with lower-resolution assets can speed up

iteration and reduce resource consumption. Later, once environments are more finalized, these

assets can be reimported at higher resolutions, preserving material setups and scene structure

while improving visual fidelity.

Texture resolution, in particular, is a critical factor. Quixel Bridge supports downloads in 2K, 4K,

and 8K, allowing developers to tailor assets to the needs of each scene. For instance, large terrain

surfaces viewed from afar may only require 2K textures, while focal-point assets such as hero

props or cinematic set pieces benefit from 4K or 8K textures. Managing resolution carefully helps

optimize memory usage and maintain a smooth frame rate in real-time environments.

Quixel also provides flexibility in material setup. Users can choose to import Unreal-compatible

materials with automatically configured packed maps or opt for individual texture files when a

custom shader pipeline is preferred. This is particularly important for stylized projects, advanced

blending workflows, or cinematic rendering, where more control is needed.

In addition to textures and materials, Static Meshes downloaded through Quixel Bridge are a vital

part of any real-time project. These meshes come with predefined LODs, which allow Unreal

Engine to automatically reduce the polygon count based on camera distance, helping maintain

performance without sacrificing visual quality. These LODs are generated by Quixel and opti-

mized for real-time use, saving artists and developers the time-consuming process of manually

setting them up.

Chapter 2 61

Moreover, for projects targeting high visual fidelity, many Quixel meshes are compatible with

Nanite, Unreal Engine’s virtualized geometry system. When enabled, Nanite allows the engine

to render high-poly meshes efficiently, removing the need for LODs altogether. This is ideal for

detailed environments where traditional LOD transitions might become noticeable or distracting.

When importing meshes from Quixel Bridge, users can choose whether to enable Nanite per

asset, depending on the project’s performance targets and platform constraints. This makes it

possible to work with cinematic-quality models in real-time applications, while still having the

flexibility to optimize where needed.

Summary
In conclusion, this chapter has provided an in-depth exploration of the vast and dynamic ecosys-

tem of Unreal Engine, focusing on the integration and utilization of various asset management

tools, such as Quixel Bridge, Fab, and other significant acquisitions by Epic Games. We delved

into the functionalities of Quixel Bridge, highlighting its seamless integration with Unreal Engine

for accessing and managing the extensive Megascans library. The introduction of Fab, a unified

marketplace, marked another significant development, amalgamating assets from diverse plat-

forms such as Sketchfab, Quixel Megascans, MetaHuman, and ArtStation into a singular, cohesive

environment.

Throughout the chapter, practical exercises and detailed explanations were provided to enhance

your understanding of these tools. These exercises were designed to demonstrate the process

of adding 3D assets, materials, and surfaces from Quixel Bridge and Fab to your Unreal Engine

projects. By doing so, we covered the essential aspects of asset downloading and placement, and

the critical adjustments needed for materials and textures, ensuring their optimal application

in a scene.

The upcoming chapter will shift focus from specific asset management tools to the standard

ingestion pipeline in Unreal Engine. It will cover core concepts and techniques for handling

Static Meshes, materials, and textures within Unreal Engine without relying on external tools

such as Quixel Bridge or Fab. Topics include asset organization, optimization for performance,

and creating and applying materials and textures for realism and visual appeal. This knowledge

is essential for anyone aiming to deepen their Unreal Engine understanding and improve their

ability to create immersive and visually stunning environments.

Quixel Bridge, Megascans, and Fab62

Subscribe to Game Dev Assembly Newsletter!
We are excited to introduce Game Dev Assembly, our brand-new newsletter dedicated to every-

thing game development. Whether you’re a programmer, designer, artist, animator, or studio lead,

you’ll get exclusive insights, industry trends, and expert tips to help you build better games and

grow your skills. Sign up today and become part of a growing community of creators, innovators,

and game changers.

https://packt.link/gamedev-newsletter

Scan the QR code to join instantly!

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

https://packt.link/gamedev-newsletter
http://packtpub.com/unlock

3
Ingestion and Static Meshes

In an open world environment game, thousands of Static Meshes make up cities, vegetation, and

props. This chapter focuses on how to ingest and optimize those meshes for performance and

visual fidelity in Unreal Engine 5 (UE5).

Static Meshes are central to environmental and object design in game development. The process

begins with an in-depth look at importing Static Meshes into Unreal Engine. This step involves

more than just file transfer; it requires a strategic approach to ensure that these assets are opti-

mized for performance, meet technical requirements, and are free from common import-related

issues.

After addressing the import process, the chapter moves on to optimization techniques. The em-

phasis here is on balancing performance with visual fidelity, a critical consideration in game

development. High-level exploration of Level of Detail (LOD) settings, mesh simplification, and

efficient UV mapping will provide practical insights into enhancing the performance of these

meshes while maintaining their aesthetic quality.

The final section of this chapter covers the application and adjustment of materials to Static

Meshes. This part covers the basic application, focusing on techniques to realistically integrate

these objects within a virtual environment. Discussions on material assignment will explore how

textures, shaders, and lighting work together to create visually compelling assets.

Included in this chapter are practical exercises designed to reinforce the concepts covered and

provide hands-on experience. These exercises are crucial for consolidating your understanding

and applying theoretical knowledge to real-world scenarios.

Ingestion and Static Meshes64

As we delve into these topics, it’s important to recognize that each aspect of importing and opti-

mizing Static Meshes in Unreal Engine is fundamental to the creation of complex, detailed, and

high-performance game environments. The skills and techniques you learn here will be instru-

mental in your development as a game creator, enabling you to effectively bring your imaginative

worlds to life.

Key topics to be covered include the following:

•	 Understanding different mesh formats and their implications

•	 Best practices for file preparation before import

•	 Importing Static Meshes

•	 Material assignment and adjustments

•	 Mesh optimization techniques

•	 Exercise 3.1: Importing our first Static Mesh

•	 Exercise 3.2: Importing FBX as Skeletal Meshes

Technical requirements
To continue the development of this chapter, it is necessary to have a PC with Unreal Engine 5.5

(or a later version) installed that meets the recommended requirements by EPIC Games and has

internet access: https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-

and-software-specifications-for-unreal-engine.

Understanding different mesh formats and their
implications
In the intricate process of creating and populating virtual environments in Unreal Engine, one of

the initial, crucial steps is selecting the appropriate Static Mesh format. Static Meshes, being the

3D models representing objects and structures in a game environment, come in various file formats.

Each of these formats has its own set of characteristics that can significantly influence both the

performance of the game and the compatibility of the assets within the Unreal Engine ecosystem.

https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine

Chapter 3 65

Commonly used static mesh formats in Unreal Engine
Unreal Engine allows working with a wide variety of formats for 3D models. Understanding these

formats is crucial for ensuring compatibility and performance in your projects. We will discuss

popular formats such as FBX, OBJ, USD, and GLTF, as well as other supported formats, such as

STL and COLLADA. This knowledge will help you make informed decisions when importing and

managing 3D assets in Unreal Engine. Let’s take a quick look at each of these formats in detail:

•	 FBX (Filmbox Format): Often the preferred choice for Unreal Engine, FBX is a versatile

format that supports a wide range of features, including 3D models, animations, and tex-

tures. Its ability to handle complex assets makes it ideal for detailed game environments.

•	 OBJ (Object File): Known for its simplicity, the OBJ format is widely used for Static Meshes

that do not require animation. Its straightforward nature allows for ease of use, though it

lacks some of the advanced features found in FBX, such as joints, skinning information, an-

imations, multiple takes of animation in one file, curves, and even embedded texture files

•	 USD (Universal Scene Description): USD is becoming significant in game development

for projects requiring intricate scene management and collaborative workflows. It facili-

tates seamless asset sharing, non-destructive editing, and layered management, making

it valuable for complex asset handling in Unreal Engine. While versatile, its real-time

rendering performance should be compared with formats such as FBX or OBJ.

•	 GLTF (Graphics Library Transmission Format): GLTF is gaining popularity for its light-

weight and efficient format, ideal for open world game development. Its compact size

and fast loading times are crucial for performance. GLTF supports PBR workflows, aligns

well with Unreal Engine’s rendering capabilities, and integrates smoothly with popular

3D modeling tools. Its performance in large-scale environments should be assessed to

ensure it meets specific project demands. GLTF offers a balance of efficiency, cross-plat-

form compatibility, and modern rendering practices, making it suitable for agile and

cross-platform projects.

•	 GLB (Binary GLTF): GLB is the binary version of the GLTF format, combining all the assets

(geometry, materials, and textures) into a single file. It is compact and efficient, reducing

the complexity of handling multiple files. GLB maintains the same advantages as GLTF,

such as support for PBR workflows and fast loading times, making it ideal for real-time ap-

plications in Unreal Engine. Its all-in-one structure simplifies asset management, making

it a popular choice for web-based or VR/AR projects that require portability and ease of use.

Ingestion and Static Meshes66

•	 Other formats: Unreal Engine also supports additional formats such as STL

(Stereolithography) and COLLADA (Collaborative Design Activity). Each of these has

specific use cases, such as STL for 3D printing models and COLLADA as an interchange

file format for diverse 3D applications.

As you can see in Unreal Engine, it’s possible to work with multiple formats and even have them

all within the same project and level. Let’s look at some of the advantages to consider when se-

lecting a format for our 3D models.

Importance of format selection
The choice of format can have a direct impact on the development workflow and the final output

in several ways:

•	 Performance: Some formats are more efficient than others in terms of how they handle

data complexity. For instance, formats such as FBX, OBJ, and GLTF that support LOD can

greatly optimize rendering performance in-game.

•	 Compatibility: Certain formats integrate more seamlessly with Unreal Engine, ensuring

smoother import processes, better asset management, and fewer compatibility issues.

This can be crucial when working with complex scenes or integrating assets from various

sources.

•	 Feature support: Depending on the format, specific features such as animations, lighting

effects, and texture mappings might be supported to varying degrees. Selecting a format

that aligns with the project’s needs in terms of these features is critical for achieving the

desired visual and interactive effects.

•	 Workflow efficiency: Some formats are more conducive to iterative workflows, allowing

for easy updates and modifications – for example, FBX and OBJ can be reimported, main-

taining the same properties as the previous file. This can significantly affect development

speed and flexibility, especially in larger projects with dynamic requirements.

In summary, understanding the distinctions and implications of each Static Mesh format is es-

sential for any developer working in Unreal Engine. This knowledge not only ensures the efficient

and effective integration of 3D models into the game environment but also plays a pivotal role

in optimizing performance and maintaining a smooth development process. As we delve deeper

into the specifics of importing Static Meshes, keeping these considerations in mind will be key

to successful asset integration.

Chapter 3 67

Choosing the right format
When building open world environments in Unreal Engine, selecting the appropriate format for

Static Meshes is a decision that significantly impacts both the quality and performance of the

game world. The right choice hinges on a balance between the visual fidelity of the assets and the

efficiency with which they are rendered, especially in expansive and detail-rich open world settings.

Here’s a snapshot of different strategies for choosing the right format:

•	 Model complexity: For highly detailed models, such as main characters, FBX is preferred

due to its advanced features, such as animations and complex textures. Simpler assets

can be efficiently handled by formats such as OBJ.

•	 Animation: When animation or rigging is required, FBX remains the go-to format, with

ALEMBIC (ABC) serving as a useful alternative for complex animations.

•	 Open world games: Managing LOD settings is critical for open world games, with FBX

supporting different mesh resolutions to optimize rendering performance, while OBJ

requires manual setup.

•	 Texture and material compatibility: Texture and material compatibility are also im-

portant, with FBX excelling in embedding these elements and GLTF/GLB emerging as an

efficient alternative.

•	 Project scale: For large-scale projects, FBX is favored for its ease of management and

widespread acceptance, while simpler projects might use OBJ or COLLADA (exported

as .dae files).

When working with Static Meshes for environment building in Unreal Engine, selecting the

right file format is key to maintaining an efficient pipeline. FBX is the most widely supported

and feature-rich format, offering reliable imports of geometry, hierarchy, collision, and custom

lightmap UVs, making it the default choice for most Unreal Engine workflows.

When needs differ, consider alternatives by use case. OBJ is a simpler alternative, ideal for static,

non-animated meshes where materials are assigned directly in the engine and is useful for light-

weight props or quick iterations. GLTF (and GLB) is gaining popularity for real-time or web-based

pipelines thanks to its compact size and ability to embed geometry and textures, though material

compatibility may vary. USD, developed by Pixar, offers a robust, nondestructive solution for

large-scale, collaborative pipelines, especially when multiple DCC tools are involved.

Ingestion and Static Meshes68

While all these formats can be used to bring Static Meshes into Unreal, your choice should align

with the project scope, team workflow, and performance requirements. FBX will serve as your

go-to format in most scenarios, but exploring other formats can help tailor your pipeline to

specific production needs.

Best practices for file preparation before import
The transition of 3D models from creation to integration into a game engine is a pivotal stage

in game development. This section delves into the critical pre-import processes necessary for

ensuring that models are not only visually appealing but also optimized for performance within

Unreal Engine. Key areas of focus include optimizing mesh topology, efficient UV unwrapping,

and the process of texture baking.

Optimizing mesh topology: ensuring efficient geometry
Mesh topology, the foundational structure of 3D models, is essential for balancing visual quality

and performance in a game environment. Optimizing topology involves refining the model’s

geometry to reduce computational load while maintaining its aesthetic integrity. This process

is crucial for ensuring that models not only look good but also perform efficiently, especially in

resource-demanding scenarios.

In modern games, optimized mesh topology plays a key role in supporting configuration options

such as performance mode (better FPS) and quality mode. By streamlining the mesh’s structure,

developers enable smoother gameplay on a range of hardware. In performance mode, a well-opti-

mized mesh reduces processing demands, leading to higher frame rates. In quality mode, efficient

geometry allows for enhanced visual detail without major performance sacrifices. This flexibility

ensures that players can choose between high performance and superior visual fidelity, catering

to diverse preferences and hardware capabilities.

Important note

While we’ll list recommendations for Static Mesh formats in Unreal Engine to serve

as a general guide, it’s crucial for developers and artists to assess each project indi-

vidually. The specific requirements of your project, such as asset complexity and

performance goals, should drive the choice of format. Remember, these guidelines

are starting points and adapting them to fit the unique needs of your game is essential

for achieving the best balance between visual quality and performance.

Chapter 3 69

UV unwrapping: laying the foundation for texturing
UV unwrapping is the process of mapping a 3D model’s surface onto a 2D texture space. This

step is crucial for texturing models accurately and efficiently, as it dictates how textures wrap

around the 3D geometry.

Texture baking: capturing detail and realism
Texture baking is a powerful technique used to capture the intricate details of high-poly models

and imprint them onto textures for use on lower-poly counterparts. This process is a cornerstone

in creating detailed and realistic game assets that are performance friendly.

By meticulously adhering to these best practices, developers can ensure that their Static Meshes

are not only visually impressive but also optimized for the demanding environment of real-time

game rendering in Unreal Engine. This preparation is fundamental to achieving a seamless and

efficient gaming experience.

Importing Static Meshes
This process involves transferring 3D models from external software into the engine while en-

suring that their properties are maintained and correctly configured for optimal performance

and visual fidelity.

Step-by-step guide to importing Static Meshes
Let’s take a detailed look at the process of importing assets into Unreal Engine.

1.	 Navigating the Content Browser: You can see it at the bottom of the Unreal Engine in-

terface. If you can’t see it, you can go to the Menu window and look for Content Browser

there. You can also try the shortcut Ctrl + Space bar with the keyboard.

1.	 Accessing the Content Browser: Initially, access the Content Browser within Un-

real Engine. This is the hub for managing all game assets, including Static Meshes.

Ingestion and Static Meshes70

Figure 3.1 – Content Browser

2.	 Creating asset folders: Before importing, organize your project by creating appro-

priate folders in the Content Browser. This step aids in efficient asset management

and avoids clutter.

2.	 Importing the mesh:

1.	 Selecting the file: There are several options to import your assets:

1.	 Use the Import button in the Content Browser to navigate to the location

of your Static Mesh file.

Figure 3.2 – Import option

2.	 Drag and drop your file directly into the desired folder.

Chapter 3 71

3.	 Select the File tab on the upper editor menu and select Import Into Level….

Figure 3.3 – Import option

4.	 Go to the desired folder on the Content Browser, right-click, and select

Import to Current Folder.

Figure 3.4 – Import option

Ingestion and Static Meshes72

2.	 Configuring import settings: A dialog box will appear, presenting various import

options. Here, adjust settings such as scale, which must match the scale used in

your 3D modeling software to maintain consistency in the game environment.

3.	 Adjusting import settings:

1.	 Normals and tangents: Configure how Unreal Engine interprets normals and

tangents. This setting is crucial for ensuring that the lighting and shading on the

mesh appear as intended.

2.	 Material import options: Decide whether to import materials and textures with

the mesh. If the mesh uses materials created in Unreal Engine, deselect this option

to prevent duplicate materials.

Let’s see how these considerations are applied by importing an FBX file as an example.

Understanding the main parameters from the Import Options
Every format has its unique Import Options window or wizard, but we will go through the most

used one that corresponds to the FBX format.

Mesh and Transform
Although we won’t describe every single option here, it’s important to understand the main

parameters of each section.

Figure 3.5 shows the import options for the FBX format:

Chapter 3 73

Figure 3.5 – FBX import options

Ingestion and Static Meshes74

The first time you import any FBX into your project, you will have the default values available.

You can modify these values depending on the specific requirements that the FBX you import

requires. These values used in the FBX Import Options dialog are saved for later use – even when

you close Unreal Engine, you can use them the next time you start the engine. Alternatively, you

can restore all the default values using the Reset to Default button found in the top-right corner.

Static Mesh versus Skeletal Mesh
In case the FBX contains one or more animations, it should also have a skeleton, and therefore,

the Skeletal Mesh and Import Mesh options will be checked. If you don’t want to import the

skeleton or any animations, you should uncheck the Skeletal Mesh checkbox, and you will see

how all of the animation-related parameters will disappear, as in Figure 3.5.

On the contrary, if you want to import your FBX with animations, keep the Skeletal Mesh option

checked. In that case, you might find yourself in three situations:

•	 Import mesh (or preview mesh), skeleton, and animations: This is usually the starting

point where you want to import the mesh you’ll be working with, you don’t have previous

skeletons useful for this particular mesh, and you also want to import new animations.

In this case, you should have the following settings:

•	 Skeletal Mesh: Checked

•	 Import Mesh: Checked

•	 Skeleton: None

•	 Under the Animation section: Import Animations checked

•	 Import mesh (or preview mesh) and animations selecting a skeleton from the project:

This is a common situation where you are using common skeletons such as the metahuman

skeleton, mannequins, or any other character or prop from your game and you want to

import a new skin and new animations for it. The following settings are required:

•	 Skeletal Mesh: Checked

•	 Import Mesh: Checked

•	 Skeleton: Select your character or prop skeleton from the project

Chapter 3 75

•	 Import only animation: Here, you might find yourself in a latter process where you have

all the meshes required for your asset as well as its skeleton, and you only need to import

new animations. The settings will be the following:

•	 Skeletal Mesh: Checked

•	 Import Mesh: Unchecked

•	 Skeleton: Select your character or prop skeleton from the project

•	 Under the Animation section: Import Animations checked

Figure 3.6 – Advanced FBX import options

 Note

When importing animations, it is important to indicate to Unreal Engine the initial

reference frames for the Skeletal Meshes. This can be done from the Advanced drop-

down menu of the FBX Import Options menu, activating the Use T0 As Ref Pose box

to avoid warnings after importing the asset, as we can see in Figure 3.6.

Ingestion and Static Meshes76

Figure 3.7 – Message Log

Collision
For Static Meshes, as mentioned before, uncheck the Skeletal Mesh option. After this, you will

need to decide whether you want to select Build Nanite for your mesh or Generate Missing

Collision if the FBX file doesn’t contain a collision geometry. In case you want to create your

simplified collision geometry in your DCC tool, you will be able to import these collisions while

naming the geometries with the following collision-naming syntax, as referred to in the Unreal

Engine documentation:

•	 UBX_[RenderMeshName]_##: A box must be created using a standard 3D rectangular ob-

ject. You cannot move the vertices or deform it in any way that changes it from being a

rectangular prism, or it will not function correctly. Do not alter the vertices or shape, as

it needs to remain a rectangular prism to work properly.

 Note

When importing assets, you may occasionally see a warning in Message Log (see

Figure 3.7). This log appears when the editor detects issues with assets and displays

a warning about the affected files. To continue working with your imported asset,

simply click the CLEAR button at the bottom of the warning window and close it.

Chapter 3 77

•	 UCP_[RenderMeshName]_##: A capsule must be a cylindrical object capped with hemi-

spheres. It doesn’t need many segments (8 is a good number) because it is converted into a

true capsule for collision. Like boxes, you should not move the individual vertices around.

•	 USP_[RenderMeshName]_##: A sphere doesn’t need many segments (8 is a good number)

because it is converted into a true sphere for collision. Like boxes, you should not move

the individual vertices.

•	 UCX_[RenderMeshName]_##: A convex object can be any completely closed convex 3D

shape. For example, a box can also be considered a convex object.

Optimization and LODs
We will go into more depth about LODs in the optimization chapters, but it’s important for you

to understand a few simple steps during the import process. We’ve already spoken about Level

of Detail or LOD, but if this is your first time in Unreal Engine, it’s useful for you to understand

how it works in the engine.

LOD in Unreal Engine is a technique used to optimize game performance by adjusting the com-

plexity of 3D models based on their distance from the camera. In essence, it involves creating

several versions of a model, each with a different LOD. The most detailed version (LOD0) is used

when the object is close to the camera, ensuring the highest visual quality. As the object moves

further away, the engine switches to less detailed versions (LOD1, LOD2, etc.), which have fewer

polygons and require less processing power to render. This switch happens automatically, based

on distance thresholds set within the engine.

This system is particularly beneficial in large, open world games where rendering numerous

high-detail objects simultaneously can strain the game’s performance. By using simpler models

for distant objects (which appear smaller on the screen and therefore don’t need as much detail),

Unreal Engine can significantly reduce the computational load, leading to smoother gameplay.

Additionally, Unreal Engine offers tools for both the manual creation of LODs and automatic LOD

generation, giving developers flexibility in how they optimize their models for different viewing

distances. LOD, combined with techniques such as texture streaming and mipmaps, ensures that

games run efficiently without compromising on the visual experience.

Ingestion and Static Meshes78

In Unreal Engine, LOD Groups are predefined settings that categorize 3D models based on their

typical usage and optimize their LOD configurations accordingly. Each LOD Group, such as

Character or Vehicle, comes with default settings that determine how many LOD levels a model

should have and at what distances these levels should switch. This system simplifies the LOD

setup process, allowing developers to quickly apply appropriate LOD settings to different types

of objects. By using LOD Groups, developers can ensure consistent and optimal LOD behavior

across various models in the game, enhancing performance while maintaining visual fidelity.

As you will be able to see, in the FBX Import Options window, there is a drop list named Static

Mesh LOD Group, where you can select the desired LOD Group for your asset. You can also check

the Import Mesh LODs option if you don’t want Unreal Engine to generate LODs automatically.

Other commonly used settings under Mesh
Most of the time, parameters and options have a very descriptive name, and you usually also have

a longer description if you hover for one or two seconds over them. Anyway, we can talk briefly

about the most commonly used ones:

•	 Generate Lightmap UVs: In most cases, your mesh will have a UV generated for its textures

and material creation. Speaking in a general case scenario, this UV will be assigned in

Unreal Engine as Channel 0. For static light baking, very useful in games targeting mo-

bile or XR, Static Meshes will require a new UV for its lightmap. If you enable this option,

Unreal Engine will get the UV islands from Channel 0 and will repack them in Channel

1, optimizing them for behaving as a lightmap.

•	 Combine Meshes: This is not as simple as it seems. As you may know, FBX files might

contain more than one mesh, and Unreal Engine, if this option is unchecked, will import

each mesh as a separate Static Mesh. If checked, only one Static Mesh will be generated,

and material IDs will be reassigned. This can be good for optimization and organization

purposes, but undesired if you want to reuse assets or meshes from this FBX for other

designs.

Materials
Under the Materials section, you will be able to select some basic, critical options for the import

process of textures and materials for your assets and files. Under Search Location, the texture

location of your assets will be selected and searched. The options for Material Import will allow

you to create materials, Material Instances, or leave your Static Meshes without a material as-

signed to set it up at a later stage.

Chapter 3 79

Figure 3.8 – Material import options

Finishing the import process
Finally, select Import if you want to bulk import and modify your settings for the different files

you’re importing, or Import All if the settings you’ve set up are the desired ones for all the bulk

import selected files.

Troubleshooting common import issues
Even with careful preparation, certain issues can arise during the import process. Being able to

identify and resolve these issues is essential for maintaining workflow efficiency and asset quality.

•	 Scaling errors:

•	 Problem identification: If a mesh appears too large or too small, it indicates a mis-

match in scale units between the 3D modeling software and Unreal Engine.

•	 Solution: Adjust the scale factor in the import settings. Ensure that the units of

measurement in your 3D modeling software align with those in Unreal Engine

(e.g., centimeters).

Ingestion and Static Meshes80

•	 Missing textures:

•	 Problem identification: Textures may fail to import, leading to meshes appearing

untextured or with incorrect materials.

•	 Solution: Ensure that texture paths are correctly set up and that textures are located

in the same directory as the mesh file. If textures are still missing, manually reassign

them in the Material Editor.

•	 Shading issues:

•	 Problem Identification: Improper shading, such as black spots or unexpected shad-

ows, can occur due to incorrect normals or smoothing groups.

•	 Solution: Verify the normals and smoothing groups in the original 3D model. In

Unreal Engine, experiment with the Compute Normals and Compute Tangents

options in the import settings to correct these issues.

•	 Mesh orientation:

•	 Problem identification: The mesh might appear rotated or flipped because different

3D software packages use different axis orientations.

•	 Solution: Adjust the axis orientation in your 3D modeling software to match Unreal

Engine’s coordinate system (X forward, Z up). Alternatively, correct the orientation

during the import process by adjusting the rotation values.

•	 Mesh flickering:

•	 Problem identification: Z-fighting occurs when two surfaces are very close or over-

lapping, causing rendering issues where the surfaces flicker.

•	 Solution: Ensure that overlapping geometry is avoided in your 3D model. You may

also need to adjust the distance between surfaces in your modeling software or

optimize the mesh to remove duplicate faces.

•	 Importing time:

•	 Problem identification: High-poly meshes or overly complex geometry can cause

performance issues during import and real-time rendering.

•	 Solution: Optimize the mesh by reducing the polygon count, merging smaller com-

ponents, and simplifying unnecessary details. You can also adjust LOD settings

in Unreal Engine to improve performance.

Chapter 3 81

Although the import process within Unreal Engine is quite straightforward, it’s important to

understand the interface and potential issues that may arise during the process. Now that we

have our 3D mesh, let’s look at how the material assignment system works.

Material assignment and adjustments
In 3D game development, material assignment is a critical process that significantly enhances

the visual appeal of models. This section delves into the technical aspects of how materials are

assigned and modified within a game engine, such as Unreal Engine.

Assigning materials
The material assignment process involves applying texture maps and defining material properties

to 3D models. The process starts in the Material Editor, where developers can create material

instances, defining various parameters such as color, reflectivity, and texture maps.

It is possible to see the materials applied to the material IDs of the Static Meshes from the Details

panel in Unreal Engine, as shown in Figure 3.9:

Figure 3.9 – Materials in the Details panel

Ingestion and Static Meshes82

In the Details panel, we can see the materials applied to the instance within the level. If we enter

the Static Mesh Editor, we can see the material IDs applied to the asset, as well as to its future

instances.

Figure 3.10 – Materials in the Static Mesh Editor

The main advantage of these two workspaces for changing materials comes from the ability to

create variations in Static Meshes simply by modifying the material instances.

Modifying materials
Material modification entails adjusting properties to achieve the desired visual effect. This could

include tweaking diffuse colors, adjusting specular highlights, or altering normal maps for en-

hanced surface detail. In real-time applications, such as games, materials also need to be opti-

mized for performance, which may involve simplifying shaders or reducing texture resolution.

Within the material construction system in Unreal Engine, we have parent materials and Material

Instances. Material Instances help us fine-tune the final look of our materials. Their interface is

simple and includes various sliders.

Chapter 3 83

Figure 3.11 – Material Instance

Parent materials define the architecture of our main material, including its nodes and primary

properties. Their construction is based on nodes and mathematical operations.

Figure 3.12 – Parent Material

Ingestion and Static Meshes84

This duality allows us to create parent materials from which Material Instances are generated,

keeping the performance cost relatively low.

Performance and aesthetics
Balancing the visual quality of materials with the performance of the game is a nuanced task that

requires a deep understanding of both artistic and technical aspects. We’ll now get a high-level

overview of the most important aspects.

Balancing visual quality with performance
The key is to achieve the highest possible visual fidelity without overburdening the GPU and CPU.

This involves optimizing texture resolutions, utilizing efficient shader algorithms, and employing

techniques such as LOD for textures. Developers must carefully consider the impact of material

complexity on frame rates and loading times.

Material adjustments for environmental conditions
Materials in a game often need to react dynamically to environmental conditions. This could

include changes in lighting, weather effects, or interactions with other in-game elements. For

instance, materials might need to appear wet during rain or change texture when a character

moves through different environments. Implementing such dynamic material adjustments in-

volves scripting interactions within the game engine and may require advanced techniques such

as shader morphing or dynamic texture blending.

In this section, we have covered the main concepts related to material assignment for Static

Meshes and the importance of the initial configuration of the asset and its subsequent instances.

We also discussed parent materials and Material Instances (which we will explore in more depth

in Chapter 8). Finally, we addressed some considerations regarding the performance of materials

and textures. In the next section, we will focus on optimization specifically for Static Meshes.

Mesh optimization techniques
The optimization of a project begins from the outset. Every element onscreen has a performance

cost, so it is essential to be aware of this to ensure that the optimization process starts early in

the development of any project.

Chapter 3 85

Why optimize?
In 3D game development, mesh optimization is a process of modifying and fine-tuning the mesh

to ensure that it meets the performance requirements of a game engine, such as Unreal Engine,

without compromising visual quality.

Optimized meshes directly contribute to the game’s overall performance. Lower polygon counts

reduce the rendering load on the GPU, enabling smoother frame rates and faster rendering times.

This is especially crucial in open world games where numerous assets need to be rendered simul-

taneously. Additionally, optimized meshes consume less memory, which is a vital consideration

for platforms with limited resources.

Optimization strategies
This subsection delves into the various techniques and methodologies employed to optimize

meshes effectively. Each strategy is aimed at reducing the computational burden while main-

taining the aesthetic essence of the asset.

•	 Reduction techniques: This technique involves strategically removing superfluous verti-

ces, which streamlines the mesh without significantly impacting its appearance. Effective

polygon reduction can dramatically decrease render times and improve overall game

performance.

•	 LOD implementation: LOD systems involve creating several versions of a model, each with

different complexity levels. The game engine dynamically selects the most appropriate

version based on the camera’s proximity, optimizing resource use without compromis-

ing visual quality. This will also include Hierarchical LOD (HLOD), where several Static

Meshes will be merged or combined to improve performance.

•	 Optimization for draw call reduction: Combining multiple small textures into a single

larger texture (texture atlasing) and grouping several small meshes to be rendered to-

gether (mesh batching) can significantly reduce draw calls. This technique is especially

effective for environments with repetitive elements, such as landscapes or architectural

interiors.

Ingestion and Static Meshes86

•	 Nanite: Of course, talking about Unreal Engine, we can’t forget Nanite, which allows

rendering extremely high-detail assets with a vast number of polygons, far beyond what

traditional methods can handle. It’s a virtualized geometry technology developed by Epic

Games that reduces or even eliminates performance issues typically associated with high

polygon counts. Nanite achieves this by efficiently streaming and processing only the

visible detail needed at any given time.

We’ve learned how mesh optimization is essential in 3D game development to ensure high per-

formance without compromising visual quality. Optimized meshes lead to smoother frame rates,

faster rendering times, and efficient memory use, which are crucial for open world games. Key

optimization strategies are critical to your project, and we will always try to take advantage of

Nanite if our project is suited for it.

Now, we will perform exercises on importing a Static Mesh and a Skeletal Mesh, demonstrating

the import process in Unreal Engine.

Exercise 3.1: Importing our first Static Mesh
Let’s engage in a new practical exercise, importing an FBX Static Mesh into Unreal Engine. We will

use a model uploaded to Sketchfab by Francis Lamoureux named Windmill (Lamoureux 2022).

Downloading an FBX file from Sketchfab
1.	 Go to https://sketchfab.com/.

2.	 Register or log in to Sketchfab.

3.	 Go to the asset link in Sketchfab: https://skfb.ly/osGzx.

4.	 Click on the Download 3D Model button.

https://sketchfab.com/
https://skfb.ly/osGzx

Chapter 3 87

Figure 3.13 – Download 3D model from Sketchfab

Ingestion and Static Meshes88

5.	 Download the FBX file.

Figure 3.14 – Download Windmill FBX

6.	 Save the file at the desired location and unzip it.

Chapter 3 89

Importing an FBX file into Unreal Engine
Now that we have our model downloaded on our PC, let’s open a new project in Unreal Engine.

1.	 In the Unreal Engine Editor, locate the Content Browser at the bottom of the screen.

2.	 Right-click in the Content Browser and select New Folder to create a folder where you will

import your FBX file (e.g., name it Windmill under Props and OpenWorlds-Packt). The

path would be as follows: Content | OpenWorlds-Packt | Props | Windmill.

3.	 Use any of the techniques written in Importing Static Meshes section on how to import the

file from the source folder. For example, drag and drop the file into the Content Browser.

4.	 You will get the FBX Import Options window.

1.	 Set Offset Uniform Scale to 300 if you want to achieve a scale relative to the UE

Mannequin (this adjustment is necessary because the Static Mesh was not au-

thored at real-world scale and needs to be resized appropriately during import).

2.	 Select Static Mesh from the Force All Mesh as Type drop-down menu.

3.	 Uncheck the Import Only Animations checkbox.

4.	 Enable Combine Static Meshes.

5.	 Assign LevelArchitecture as Static Mesh LODGroup.

6.	 Enable the Generate Lightmap UVs checkbox.

Ingestion and Static Meshes90

Figure 3.15 – Import options Static Mesh FBX

Chapter 3 91

7.	 Now we can click the Import button at the end of the FBX Import Options window.

8.	 You will now see a Static Mesh called FBX and a material called standardSurface1.

Figure 3.16 – Imported Static Mesh FBX

9.	 Import the textures from the textures folder.

In the following screenshot, we can see the Static Mesh, materials, and textures from the

import process.

Important note

It doesn’t happen often, but sometimes, textures can be damaged or corrupt-

ed and will be rejected by Unreal Engine. If that’s the case, you can always

open the image with your preferred image editor software and resave the

image. Try reimporting after that. Long names and paths can also generate

an import conflict. If that’s the case, try shortening the name of the file and

reimporting.

Ingestion and Static Meshes92

Figure 3.17 – Imported textures, Static Mesh FBX

5.	 You will now see your textures in the Content Browser.

1.	 Open the standardSurface1 material with a double-click on the thumbnail. You

will see two nodes:

•	 Param

•	 Standardsurface1

2.	 Delete the Param node, drag and drop the textures in the Material Graph Editor,

and connect them, following Figure 3.18:

Figure 3.18 – Materials, Static Mesh FBX

Chapter 3 93

3.	 Pay attention to the highlighted node and connection string. After connecting it

to the Opacity Mask, it will remain grayed out.

4.	 Select the standardSurface1 node on the right, or unselect everything, and you

will see the Material detail panel.

5.	 Under Blend Mode, select Masked.

6.	 Click Apply in the top toolbar next to the Search button.

Figure 3.19 – Masked Material, Static Mesh FBX

See how your Static Mesh Material preview has already changed. You can now drop your

FBX Static Mesh into your level as many times as you want.

Figure 3.20 – Masked Material, Static Mesh FBX

Ingestion and Static Meshes94

With our first Static Mesh imported, we’re now ready to move on to importing FBX files as Skel-

etal Meshes.

Exercise 3.2: Importing FBX as Skeletal Meshes
In this new exercise, we will learn how to import a Skeletal Mesh. Our goal is to import a 3D model

with associated animations. For this purpose, we will use the Windmill FBX.

1.	 In the Unreal Engine Editor, locate the Content Browser at the bottom of the screen.

2.	 Right-click in the Content Browser and select New Folder to create a folder where you

will import your FBX file (e.g., name it Windmill-SK under Props and OpenWorlds-Packt).

The path would be as follows: Content | OpenWorlds-Packt | Props | Windmill-SK.

3.	 Use any of the techniques written in Importing Static Meshes section on how to import

files from the source folder. For example, drag and drop the file into the Content Browser.

4.	 You will get the FBX Import Options window:

1.	 Click Use Pipeline Defaults to reset any changes made previously.

2.	 Set Offset Uniform Scale to 300.

3.	 Select Skeletal Mesh from the dropdown in Force All Mesh as Type.

4.	 Deselect Import Only Animations.

5.	 Uncheck Import Material, and in Search Location, pick Do not Search.

6.	 Click on Import.

 Important note

This chapter was captured in Unreal Engine 5.3. Although 5.3 includes the Content

Drawer, we use the standard Content Browser terminology to keep one consistent,

workflow (especially for readers coming from earlier versions). The steps work in

UE5.3 or later; expect only minor UI/name differences in newer releases.

Chapter 3 95

Figure 3.21 – Import, Skeletal Mesh FBX

Ingestion and Static Meshes96

After importing the asset, you will see a window called Message Log displaying the warn-

ing Could not find the bind pose (sometimes shown twice). This is not an error, just a

warning related to skeletal data that is not relevant for Static Meshes. You can safely ignore

it by closing the window or clicking CLEAR, as shown in Figure 3.22:

Figure 3.22 – Import, Message Log

5.	 As we imported and modified the material in the preceding exercise, the material might

be assigned directly to the Skeletal Mesh. If this is not the case for you, assign the

material created for the Static Mesh to the Skeletal Mesh. You can assign it in the Skeletal

Mesh Editor, as shown in Figure 3.21, or directly on the level instance. In order to open the

Skeletal Mesh Editor, open any of the assets created in the folder where you can see the

windmill, as shown in Figure 3.23, and select the Skeletal Mesh Editor in the top right of

the window (see Figure 3.24):

Chapter 3 97

Figure 3.23 – Animation sequence asset, Skeletal Mesh FBX

In Figure 3.23, we can see the assets imported into our project, with a focus on those re-

lated to the Skeletal Mesh. We can observe the Skeleton, Physical Assets, and Animation

Sequence.

Figure 3.24 – Skeletal Mesh Editor, Material Slots, Skeletal Mesh FBX

6.	 Place the asset on the level.

7.	 If the scale is not as desired, please keep in mind that you can modify the scale of the im-

ported assets in both Skeletal Mesh Editor and Animation Sequence Editor, as shown in

Figures 3.25 and 3.26. After choosing the desired scale, select Reimport Mesh With Dialog.

This is also highlighted in the following screenshots:

Ingestion and Static Meshes98

Figure 3.25 – Import scale, reimport base mesh, Skeletal Mesh FBX

Figure 3.26 – Import scale, reimport animation, Skeletal Mesh FBX

Chapter 3 99

8.	 If you’ve modified the import scale and reimported the asset, you’ll see the modification

directly in the instance of the asset in the level.

9.	 In order to see the animation playing, click the Simulate button on the top toolbar.

Double-check that your asset is correctly set up. Your Skeletal Mesh placed in the level

should have the following settings in the Animation section:

Figure 3.27 – Setting and simulation, Skeletal Mesh FBX

1.	 Animation Mode: Use Animation Asset

2.	 Anim to Play: Desired animation (e.g., FBX_Anim)

3.	 Looping: Checked

4.	 Playing: Checked

Skeletal Meshes are a straightforward way to bring animated objects (or objects ready for anima-

tion) into our projects, allowing us to bring life to our scenes with moving elements.

Ingestion and Static Meshes100

Summary
The first part of this chapter focused on the concept of asset ingestion in Unreal Engine, an es-

sential process for integrating external assets into game projects. We delved into the detailed

steps of importing Static Meshes, particularly in FBX format, into Unreal Engine. This included

preparing the Content Browser, configuring import settings to suit the project’s requirements,

and troubleshooting common issues that might arise during the import process. By guiding you

through the practical exercise of importing an FBX file, the chapter aimed to equip you with a

fundamental understanding of how to efficiently bring external 3D models into your Unreal Engine

projects, setting the stage for further manipulation and integration within the game environment.

The second part of the chapter dealt extensively with optimization techniques, crucial for enhanc-

ing game performance while maintaining high visual quality. We explored the implementation

of Level of Detail (LOD) strategies, explaining how different LODs are used to manage the com-

plexity of models based on their proximity to the camera. The chapter also covered optimization

strategies for materials, emphasizing the balance between aesthetics and performance and the

importance of adjustments in response to environmental conditions.

The next chapter will shift our focus to the foundational elements of project structure and nam-

ing conventions in Unreal Engine. This crucial aspect of game development ensures efficient

management and organization of assets, which is especially important in complex projects with

numerous elements.

References
•	 Design Bureau. 2020. “Slum house - Download Free 3D model by DESIGN BUREAU

(@designbureau).” Sketchfab. https://sketchfab.com/3d-models/slum-house-

e902e0af80804d01924387da6af8eecf.

•	 Farinha, Diego. 2023. “Implementing USD for Game Development Pipelines: An Inter-

view with Polyphony Digital | NVIDIA Technical Blog.” NVIDIA Developer. https://
developer.nvidia.com/blog/implementing-usd-for-game-development-pipelines-

an-interview-with-polyphony-digital/.

•	 Lamoureux, Francis. 2022. “Windmill (game ready) - Download Free 3D model by Fran-

cisLam. (@francislam).” Sketchfab. https://sketchfab.com/3d-models/windmill-game-

ready-6a006afce57a447baa60c7a6791f0086.

https://sketchfab.com/3d-models/slum-house-e902e0af80804d01924387da6af8eecf
https://sketchfab.com/3d-models/slum-house-e902e0af80804d01924387da6af8eecf
https://developer.nvidia.com/blog/implementing-usd-for-game-development-pipelines-an-interview-with-polyphony-digital/
https://developer.nvidia.com/blog/implementing-usd-for-game-development-pipelines-an-interview-with-polyphony-digital/
https://developer.nvidia.com/blog/implementing-usd-for-game-development-pipelines-an-interview-with-polyphony-digital/
https://sketchfab.com/3d-models/windmill-game-ready-6a006afce57a447baa60c7a6791f0086
https://sketchfab.com/3d-models/windmill-game-ready-6a006afce57a447baa60c7a6791f0086

Chapter 3 101

Subscribe to Game Dev Assembly Newsletter!
We are excited to introduce Game Dev Assembly, our brand-new newsletter dedicated to every-

thing game development. Whether you’re a programmer, designer, artist, animator, or studio lead,

you’ll get exclusive insights, industry trends, and expert tips to help you build better games and

grow your skills. Sign up today and become part of a growing community of creators, innovators,

and game changers.

https://packt.link/gamedev-newsletter

Scan the QR code to join instantly!

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

https://packt.link/gamedev-newsletter
http://packtpub.com/unlock

4
Project Structure and
Naming Conventions

Picture this: an Unreal project devoid of folders, where all assets are haphazardly scattered

throughout the root directory with random names. This chaotic setup would be a developer’s

nightmare, rendering asset retrieval a time-consuming ordeal.

Now, envision the same project meticulously organized, with assets grouped logically within a

folder hierarchy and named descriptively to clarify their purpose and relationships. Moreover,

imagine all departments adhering to the same organizational structure and naming conventions.

In this scenario, locating required assets becomes effortless, maximizing developer efficiency

and productivity.

This chapter stresses the importance of establishing and maintaining a structured project layout

and naming convention in Unreal Engine. This applies not only to project elements such as assets

and code but also to scene actors and the project repository.

Maintaining a clear and consistent project structure is especially vital when building open world

landscapes, where multiple assets, levels, and systems must work together seamlessly. While

these practices may not directly impact engine performance or graphical fidelity, they are essen-

tial for the success of any project, particularly those involving numerous assets or collaborators.

In the upcoming sections, we’ll delve into the specifics of the Allar Style Guide, offering it as both

an example and a guide for crafting project structures and naming conventions. Additionally,

we’ll discuss strategies for safeguarding our work and facilitating collaborative efforts among

team members. This will involve utilizing repositories and revision control tools such as SVN,

Git, Plastic, or Perforce.

Project Structure and Naming Conventions104

Key topics to be covered include the following:

•	 Advantages of a correct project structure and naming convention

•	 Examples of project structure and naming conventions

•	 Revision control tools for Unreal Engine

•	 Exercise 4.1: Applying a project structure and naming convention protocols

•	 Exercise 4.2: Using revision control tools for Unreal Engine

This chapter is designed to provide deep technical insight into these tools, enhancing both the

efficiency and quality of asset management and integration in Unreal Engine 5.

Technical requirements
To proceed with this chapter, you will need a PC with Unreal Engine 5.5 (or a later version)

installed, meeting the recommended system requirements provided by Epic Games, along with

internet access.

You can find the hardware and software specifications for Unreal Engine here:

https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-

specifications-for-unreal-engine

Additionally, you will need to have both GitHub Desktop and Sourcetree installed on your ma-

chine:

•	 To download GitHub Desktop, visit https://github.com/apps/desktop

•	 To download Sourcetree, visit https://www.sourcetreeapp.com/

Advantages of a correct project structure and
naming convention
This section provides detailed technical insights into effective project structure and naming

conventions. By implementing these practices, you can significantly enhance the efficiency and

quality of asset management and integration in Unreal Engine 5 (UE5). Additionally, maintain-

ing order and clarity in your project files helps improve collaboration among team members and

facilitates the scalability of your projects as they grow in complexity.

Let’s explore these tools and techniques in detail and discover how they can streamline your

development process.

https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine
https://github.com/apps/desktop
https://www.sourcetreeapp.com/

Chapter 4 105

Maintaining order and clarity
Achieving a well-structured and organized project is essential for efficient development in Unreal

Engine 5. By adhering to these guidelines, you can enhance collaboration, streamline debugging,

and facilitate the scalability of your projects:

•	 Project structure:

•	 Folder hierarchy: Establishing a clear hierarchy of folders is crucial for a well-de-

fined project structure, as it separates assets, code, and other resources in an orga-

nized manner. This structured approach facilitates efficient collaboration among

team members by making it easier to locate, manage, and update project files.

•	 Content organization: Categorizing assets into folders based on their type (tex-

tures, meshes, Blueprints, etc.) simplifies asset retrieval and modification.

•	 Folder organization:

•	 Asset management: Storing assets within the Content directory in an organized

manner streamlines asset management. Subfolders categorized by asset type

simplify navigation and aid in the digital construction and debugging process.

•	 Asset identification: While Unreal’s interface visually identifies asset types

through icons, external programs such as Git and Windows Explorer rely solely

on asset names and directory paths.

•	 Source code: Dedicating specific folders to C++ or Blueprint Classes facilitates

version control and fosters modular and object-oriented coding practices.

In Figure 4.1, we can see a screenshot of the Unreal Engine Content Browser, where color-coded

stripes define the category of the stored asset.

Figure 4.1 – Different assets and their icons in Unreal’s interface

Project Structure and Naming Conventions106

On the other hand, in Figure 4.2, we can see from the filesystem manager that all the previously

viewed assets have the same .uasset extension, except for maps, which have a .umap extension:

Figure 4.2 – Different assets in the filesystem manager

When storing assets in Unreal Engine, they are converted into a format that allows the engine to

interpret and apply them in real time to our projects. This underscores the importance of cate-

gorizing them correctly into folders based on the type of asset being used.

Enhancing collaboration
Effective collaboration in UE5 relies on clear communication and consistent workflows. Estab-

lishing shared standards for language, naming conventions, and version control helps teams

work together efficiently across different stages of development. These practices ensure that

every contributor can navigate, modify, and expand the project with confidence. The following

guidelines will help you maintain coordinated teamwork throughout your project:

•	 Language: Opting for a common language, typically English, ensures effective commu-

nication and facilitates sharing with diverse stakeholders.

•	 Consistent naming conventions:

•	 Assets identification: Employing a consistent naming convention for assets en-

hances understanding and streamlines collaboration, particularly in multi-de-

partment projects

•	 Blueprints and classes: Clear and indicative naming conventions for Blueprints

and classes aid in communication and prevent errors or duplication of work during

collaboration

Chapter 4 107

•	 Version control:

•	 Branch naming: Establishing a convention for branch names in version control

systems (VCSs) aids in identifying branch purpose and scope, promoting seamless

collaboration

•	 Commit messages: Standardized commit messages enable team members to easily

comprehend changes and make informed decisions, fostering efficient collabo-

ration and issue tracking

•	 Outsourcing: Language selection, project structure, and naming conventions are crucial

when collaborating with external teams.

Maintaining a clear project structure and consistent naming conventions not only improves

current workflows but also sets a solid foundation for future growth.

Facilitating scalability and maintenance
In the world of game development, Unreal Engine 5 is a versatile tool for realizing creative visions.

Yet, its full potential emerges when developers prioritize a well-structured project. This organi-

zation is key for scalability and maintenance, enabling easier adaptation, efficient debugging,

and futureproofing.

Here’s how effective project management can ensure adaptability to growth:

•	 Modularity: A structured project easily accommodates new requirements or design chang-

es. Modularity in both code and assets facilitates scalability, simplifying the integration

of new features or expansion of the game world.

•	 Futureproofing: Investing time in establishing a robust project structure and adhering

to naming conventions preemptively addresses potential issues as the project grows in

complexity.

•	 Debugging and troubleshooting: A well-organized project structure expedites issue

identification and resolution. Developers can pinpoint problems efficiently, minimizing

downtime and improving the development process.

Hence, to fully leverage the capabilities of UE5, developers must recognize the pivotal role of

project structure and naming conventions. A meticulously organized project not only fosters

collaboration and enhances daily efficiency but also lays the groundwork for scalable and main-

tainable game development.

Project Structure and Naming Conventions108

Examples of project structure and name conventions
Before looking at specific naming conventions, it’s essential to understand why the Content folder

in Unreal Engine holds such importance in project structure. This folder serves as the central hub

for all assets used in a project—whether they are 3D models, materials, textures, or Blueprints.

A well-organized Content folder not only ensures that team members can easily find and manage

assets but also prevents issues such as duplicate files, lost references, and inconsistent asset use,

which can lead to unnecessary complications in large-scale projects.

This organization becomes especially critical in open world environments or projects that in-

volve multiple teams, where efficient collaboration depends on a unified structure. It’s for these

reasons that adhering to a proper project structure within the Content folder is considered an

industry best practice.

To illustrate how these principles can be applied effectively, we will reference the Allar Style

Guide: a widely adopted industry standard that provides concrete examples of how to structure

and name assets in day-to-day workflows. The guide outlines practices that not only promote

consistency across projects but also improve scalability and performance, making it an essential

tool for any studio or development team.

Exploring the Allar Style Guide
One of the most renowned conventions in the Unreal Engine community is the Allar Style Guide,

named after its creator, Michael Allar. Widely embraced by developers, this guide serves as a

cornerstone for Unreal Engine projects. For detailed insights, the complete guide is available at

the GitHub repository: https://github.com/Allar/ue5-style-guide.

In the subsequent sections, we’ll outline the key principles of Allar’s project structure and naming

conventions.

Allowed characters
Any identifier should strive to only have the following characters when possible: A–Z, a–z, 0–9, _.

https://github.com/Allar/ue5-style-guide

Chapter 4 109

Naming assets
Any asset within this logical group should adhere to the standard Prefix_BaseAssetName_

Variant_Suffix, as follows:

•	 Prefix and Suffix are to be determined by the asset type, following the asset name

modifier tables, as we can see in the following figure. For additional assets, please refer

to the Allar Style Guide documentation: https://github.com/Allar/ue5-style-guide.

In the following table from the Allar Style Guide, we can see the suffixes and prefixes used

for the most common assets in Unreal Engine and their variations.

Figure 4.3 – Allar Style Guide asset name modifier table (Credit: https://github.
com/Allar/ue5-style-guide?tab=readme-ov-file#asset-name-

modifiers)

https://github.com/Allar/ue5-style-guide
https://github.com/Allar/ue5-style-guide?tab=readme-ov-file#asset-name-modifiers
https://github.com/Allar/ue5-style-guide?tab=readme-ov-file#asset-name-modifiers
https://github.com/Allar/ue5-style-guide?tab=readme-ov-file#asset-name-modifiers

Project Structure and Naming Conventions110

It is also important to categorize the naming conventions for textures and material-related

resources, as this will aid in their subsequent use. Figure 4.4 illustrates this:

Figure 4.4 – Allar Style Guide asset name modifier table (Credit: https://github.
com/Allar/ue5-style-guide?tab=readme-ov-file#126-textures)

•	 BaseAssetName should be a concise and easily identifiable name that pertains to a group

of assets. For instance, if all assets are related to a character named Bob, Bob would serve

as BaseAssetName.

•	 Variant represents specific variations of an asset and is also short and recognizable. It

groups subsets of the base asset. For instance, Bob’s different skins would be named

Bob_Evil for an evil skin and Bob_Retro for a retro skin.

For unique but generic asset variations, Variant is designated by a two-digit number

starting from 01. For instance, rocks created by an environment artist would be named

Rock_01, Rock_02, Rock_03, and so on.

https://github.com/Allar/ue5-style-guide?tab=readme-ov-file#126-textures
https://github.com/Allar/ue5-style-guide?tab=readme-ov-file#126-textures

Chapter 4 111

Let’s examine a specific case of a complete asset within Unreal Engine, considering the Skeletal

Mesh, materials, and textures:

Figure 4.5 – Bob’s asset naming example (Credit: https://github.com/Allar/ue5-
style-guide?tab=readme-ov-file#11e1-bob)

Let’s also look at what we encounter when dealing with assets that have different variants.

Figure 4.6 – Rock variants asset naming example (Credit: https://github.com/Allar/
ue5-style-guide?tab=readme-ov-file#11e2-rocks)

As you can see, the structure is simple and scalable, but that doesn’t mean it’s rigid. You can

adapt it to the specific needs of your project, if it maintains an internal logic that allows everyone

involved in the project to understand and work with it effectively.

Content directory structure
Allar uses the Unreal Content Browser’s filtering and search features to find specific types of assets,

rather than organizing assets into folders by type. Since asset names already indicate their type,

there’s no need for extra folders such as Asset or AssetType. This approach avoids redundancy

and takes advantage of the Content Browser’s filtering system. For instance, to view only Static

Meshes in the Environment/Rocks/ directory, just activate the Static Mesh filter.

https://github.com/Allar/ue5-style-guide?tab=readme-ov-file#11e1-bob
https://github.com/Allar/ue5-style-guide?tab=readme-ov-file#11e1-bob
https://github.com/Allar/ue5-style-guide?tab=readme-ov-file#11e2-rocks
https://github.com/Allar/ue5-style-guide?tab=readme-ov-file#11e2-rocks

Project Structure and Naming Conventions112

Examples of an open world project structure can be found in Figure 4.7:

Chapter 4 113

Figure 4.7 – Project structure example

Project Structure and Naming Conventions114

Next, let’s look at some considerations when working with organizational structures based on

folders:

•	 Folder names: Start folder names with a capital letter, followed by subsequent words, all

in capitals and no spaces, using the A–Z, a–z, 0–9 characters only.

•	 Use a top-level folder for project-specific assets: Keep all project assets in a folder named

after the project to avoid conflicts and maintain organization.

•	 Use the Developers folder for local testing: Use the Developers folder for local testing

to create a safe environment for experimentation.

•	 All map files belong in a folder called Maps: Place all map files in a Maps folder within /

Content/Project for easy access and organization.

•	 Use a Core folder for critical assets and Blueprints: Store fundamental assets in the /

Content/Project/Core folder and avoid direct modifications.

•	 Very large asset sets get their own folder layout: Use specialized folder layouts for large

asset sets such as animations and audio.

For example, animations shared across multiple characters should be placed in Characters/

Common/Animations and may be further organized into subfolders such as Locomotion or

Cinematic. This approach does not apply to assets such as textures and materials.

•	 Materials library: Store reusable materials or textures in Content/Project/

MaterialLibrary for easy access and consistency.

•	 No empty folders: There shouldn’t be any empty folders as they clutter the Content

Browser.

Following the correct project structure and naming conventions is equally important for assets

and resources that we create and import into the engine, whether they are 3D models or textures.

However, it’s important to note that these rules are not set in stone. They are a set of guidelines

aimed at keeping the workspace organized, facilitating the workflow across different teams, and

ensuring consistency throughout the project.

As development progresses, it’s common for teams to adapt these guidelines to better suit their

specific needs. This flexibility is entirely normal, as long as any changes are well documented and

communicated clearly to everyone involved in the project. Proper documentation ensures that

all team members stay on the same page, preventing confusion or disruptions in the workflow,

even as the project evolves.

Let’s now review these conventions and explore how they can be applied effectively.

Chapter 4 115

Guidelines for assets and resources created and imported
into Unreal Engine
Whenever we consider importing assets into Unreal Engine, whether they are 3D models, textures,

or assets being migrated between projects, it is crucial to conduct an initial check to ensure that

the assets meet our final requirements. If they do not, we need to understand their initial state

and apply corrective measures within the engine. Let’s explore what these considerations are:

•	 Static Meshes:

•	 Static Mesh UV channels should be correctly configured: Specifically, UV Chan-

nel 0 should be set up for textures, and UV Channel 1 should be used for Lightmaps.

In the Lightmap UV channel, UV islands should not overlap to ensure accurate

lighting calculations.

•	 Levels of detail (LODs) should be set up correctly: This check is project-specific,

but generally, any mesh visible at different distances should have proper LOD.

LODs reduce the complexity of a 3D model as it gets farther from the viewer, im-

proving rendering efficiency by lessening the graphics pipeline’s workload.

•	 All meshes must have collision: This aids the engine with tasks such as bounds

calculations, occlusion, and lighting. Additionally, the collision should be accu-

rately aligned with the asset.

•	 All meshes should be scaled correctly: Level designers or Blueprint authors should

not have to tweak the scale of meshes. Scaling meshes in the engine should be

treated as a scale override, not a scale correction.

•	 Niagara:

•	 There should be no spaces: All names should begin with a capital letter, followed

by subsequent words also starting with capital letters, without using spaces. Only

the A–Z, a–z, 0–9, and _ characters should be used to avoid unexpected issues

when working with HLSL or other scripting systems.

•	 Textures:

•	 Texture dimensions should be powers of 2 (2, 4, 8, 16, 32, or 64 pixels): While

square textures are commonly used in the engine, rectangular textures are also ac-

ceptable as long as they adhere to this power-of-2 rule. This ensures that mipmaps

can be generated for the textures, which helps the engine operate more efficiently.

This rule does not apply to UI textures, which can have any size as needed.

Project Structure and Naming Conventions116

•	 Texture density should be uniform: All textures should be of a size appropriate

for their standard use case. Appropriate texture density varies from project to

project, but all textures within that project should have a consistent density. For

example, if a project’s texture density is 8 pixels per 1 unit, a texture that is meant

to be applied to a 100x100 unit cube should be 1,024x1,024, as that is the closest

power of 2 that matches the project’s texture density.

•	 Textures shouldn’t be huge: No texture should have a dimension that exceeds

8,192 in size, unless you have a very explicit reason to do so.

•	 Textures should be grouped correctly: Every texture has a Texture Group property

used for LOD, and this should be set correctly based on its use. For example, all UI

textures should belong in the UI texture group.

•	 Content directory structure:

•	 World Composition: For large open world projects or Levels with extensive envi-

ronments, Unreal Engine’s World Composition feature allows you to split a vast

world into smaller, more manageable sublevels. Each sublevel can be edited inde-

pendently, reducing the likelihood of errors or conflicts between team members.

This is especially useful in collaborative environments, as different team members

can work on separate parts of the project simultaneously.

•	 Subprojects and asset segmentation: For projects with multiple distinct gameplay

systems or environments, consider segmenting large asset sets into subprojects.

•	 Modularity in code and assets: Structuring your code and assets in a modular

way ensures that individual elements can be reused, replaced, or modified without

affecting other parts of the project.

•	 Overcomplicated folder hierarchy: While it may seem intuitive to create deeply

nested folder structures for highly specific assets, this can actually lead to confu-

sion. Instead, aim for a simple and flat folder structure, relying on Unreal Engine’s

powerful filtering tools in the Content Browser.

•	 Lack of early naming conventions: Without clear and consistent naming con-

ventions from the outset, asset duplication and confusion can arise, especially in

collaborative projects.

•	 Redundant folders: It’s common for teams to create excessive folders or duplicate

folder structures due to poor communication or organization. Redundant folders

slow down project navigation and clutter the Content Browser.

Chapter 4 117

All the previously discussed points are essential initial considerations for formatting and struc-

turing the resources we develop. Maintaining consistency is key, as it is reassuring to know that,

even when migrating information from one project to another, all resources adhere to the same

format and structure, eliminating the need for adjustments in this regard.

Revision control tools for Unreal Engine
In the dynamic world of game development, where collaboration, code changes, and asset man-

agement are constant, revision control tools play a vital role in maintaining order and efficiency.

Revision control (also known as source control or version control) is an online system that

tracks changes to the project’s source code and related assets over time. Changes are usually

identified by a unique number or letter code, referred to as the revision number, revision level, or

simply revision. Each revision is associated with a timestamp and the developer who made the

change, facilitating effective remote collaboration.

The tool provides the following features:

•	 Tracking of the project modifications

•	 Project changes and history versions safeguarding

•	 Project versions comparison

•	 Restoration or rolling back to previous versions

•	 Conflict avoidance (when more than one developer is modifying the same file at the same

time)

•	 With some types of files (mostly code or text), automatically or manually merges the

changes

•	 Efficient collaboration in both small and large development teams/projects

Let’s delve a bit deeper into the revision control options available within Unreal Engine.

Revision control options for Unreal Engine
Revision control is the backbone of collaborative software development. It enables multiple de-

velopers to work on a project simultaneously, keeps track of changes made to the source code and

assets, and provides a safety net by allowing you to roll back to previous versions if something

goes wrong.

Project Structure and Naming Conventions118

In order to enable revision control features directly in Unreal Engine, you can click the Revision

Control button on the very bottom right of the Editor. After clicking Connect to Revision Con-

trol…, you will be able to select your desired VCS and configure it.

In Figure 4.8, we can see the login window for Unreal Engine’s revision control system, where

you can select from various services compatible with the engine:

Figure 4.8 – Unreal revision control window

There are a variety of tools for achieving source control for Unreal Engine, such as the following:

•	 Subversion (SVN) is a centralized VCS similar to Perforce. While it’s not as common in

game development, Unreal Engine does provide support for SVN.

Its pros are the following:

•	 Centralized repository simplifies management

•	 Easier learning curve compared to Git

•	 Suitable for smaller projects with simpler requirements

•	 Better support for binary files compared to Git

Its cons are the following:

•	 Lack of advanced branching and merging features

•	 Centralized models may lead to bottlenecks

Chapter 4 119

•	 Git is a distributed version control system (DVCS) widely used in the software devel-

opment industry. Unreal Engine has built-in support for Git, making it easy to integrate

into your workflow.

Its pros are as follows:

•	 Widely used and well supported in the industry

•	 Decentralized, allowing for easy branching and merging

•	 Efficient handling of text-based files

•	 Large and active community

Its cons are as follows:

•	 Handling of large binary files can be challenging. It’s a steeper learning curve for

beginners.

•	 Plastic SCM is a DVCS that focuses on branching and merging capabilities. While not as

widely known as Git or Perforce, it offers robust features for version control.

The following are its pros:

•	 Visual representation of branches for better understanding

•	 Efficient handling of branching and merging

•	 Good support for large binary assets

•	 Distributed architecture provides flexibility

Here are its cons:

•	 Smaller community compared to Git and Perforce

•	 Less widespread adoption in the industry

•	 Perforce, also known as Helix Core, is a centralized VCS commonly used in larger projects

or enterprises. Unreal Engine provides robust Perforce integration for teams that prefer

this system.

Here are its pros:

•	 Excellent support for large binary assets

•	 Robust locking mechanism to prevent conflicts

•	 Efficient handling of large projects and assets

•	 Advanced branching and merging capabilities

Project Structure and Naming Conventions120

The following are its cons:

•	 Centralized models may lead to bottlenecks

•	 Licensing costs for large teams

Table 4.1 shows a comparison among all the supported systems for Unreal Engine:

Feature Subversion (SVN) Git Plastic SCM Perforce

Version control model Centralized Distributed Distributed Centralized

Locking mechanism N/A (merge-based) N/A (merge-

based)

N/A (merge-

based)

File locking

Scalability Suitable for small

to medium projects

Good for all

project sizes

Suitable for

all project

sizes

Excellent for

large projects

Branching and

merging

Supports

branching and

merging

Strong support Powerful

branching

and merging

Supported,

but less

flexible

Integration with UE Native support Native support Native

support

Native

support

Community support Active community Large and

active

community

Active

community

Big and active

community

Table 4.1 – VCS features comparison

Choosing the right revision control system depends on the specific needs of your project, team

preferences, and the complexity of your development workflow. Consider factors such as project

size, asset types, collaboration requirements, and individual developer preferences when making

your decision.

In the next section, we will discuss best practices to follow when working in a VCS environment.

Chapter 4 121

Best practices for source control in Unreal Engine
Working in a VCS environment provides the reassurance that the work done by us and our team-

mates is secure and backed up. However, it is important to keep in mind some key considerations

to make the most of this system:

•	 Commit regularly: Regular commits help maintain a clear history of changes and make

it easier to identify and revert problematic updates.

•	 Use name conventions: Apply your team’s name conventions for commits and branches.

•	 Use meaningful commit messages: Write descriptive commit messages to provide context

and make it easier for team members to understand the purpose of each change. Since

we are discussing folder standardization, filenaming conventions, and version control

management, it’s important to introduce at least one widely accepted commit message

standard.

A recommended approach is to follow the Conventional Commits specification, which

provides a structured format for commit messages that makes them easier to understand

and automate. This format uses specific prefixes such as fix, feat, or chore to indicate the

nature of the commit. For more detailed guidelines, refer to the Conventional Commits

specification.

•	 Branch strategically: Plan your branching strategy based on your project’s needs. Fea-

ture branches, release branches, and hotfix branches are common in game development.

•	 Periodic code reviews: Regular code reviews help catch issues early, ensure code quality,

and facilitate knowledge sharing among team members.

•	 Back up before major changes: Before making significant changes, create a backup or

snapshot of your project to safeguard against unforeseen issues.

Effective source control is a critical aspect of game development, and Unreal Engine provides

seamless integration with popular tools such as Git and Perforce. Whether you’re working on

a small indie project or a large-scale production, adopting best practices for source control will

contribute to a smoother development process, improved collaboration, and a more reliable code-

base. Choose the source control system that best fits your project’s needs and enjoy the benefits

of version control in your development journey.

Project Structure and Naming Conventions122

Exercise 4.1: Applying a project structure and name
convention protocols
Let’s engage in a practical exercise to consolidate our understanding of applying a project structure

and name convention protocol. Let’s create a new project and organize some assets!

Let’s begin:

1.	 Create a new Unreal Engine project: Start by launching Unreal Engine and creating a new

project. Name it according to these characteristics: it will be a 3D third-person character

view multiplayer online coop PVE medieval fantasy RPG.

2.	 Create the folder’s main structure and include some assets: We are going to include

some different assets in the project:

•	 The following maps:

•	 Swamp

•	 Village

•	 The following assets for the maps:

•	 Swamp trees and rocks

•	 Village houses and street market stalls

•	 Our three characters:

•	 Our main character

•	 An orc enemy

•	 A vendor NPC

•	 The following base Blueprints for controlling characters and environment:

•	 Character movement

•	 Character attacks

•	 Sun controller

•	 Music controller

•	 Scene controller

•	 A VFX for an attack

Chapter 4 123

•	 The following materials to use freely in the project:

•	 Polished metal

•	 Cedar wood

•	 Dark gray rock

•	 Grass (this one is in the testing process)

Remember to name the assets properly, using Allar naming conventions.

The result of your organization should look similar to the structure shown in Figure 4.9:

Figure 4.9 – Exercise 01 – project structure

Let’s look at our next exercise.

Exercise 4.2: Using revision control tools for Unreal
Engine
For our second exercise, we’ll propose the practice of using a revision control tool for Unreal Engine.

You can choose any revision control tool for this exercise, though the step-by-step walk-through

uses Git:

1.	 Create a (free personal) GitHub account. GitHub will store our project in their repositories.

You could also investigate other platforms, such as AWS CodeCommit, GitLab, or Azure

DevOps, and their characteristics and pricing.

Project Structure and Naming Conventions124

2.	 Open or create your Unreal Engine account and connect GitHub to it. You will find the

Apps and Accounts tab in the sidebar:

Figure 4.10 – Exercise 02 – GitHub connection to Unreal account

3.	 You will receive an email from GitHub with a Join@EpicGames button you must press

to complete the linking process.

4.	 Download a Git GUI app, such as one of the following:

•	 GitHub Desktop app: https://desktop.github.com/

•	 Sourcetree: https://www.sourcetreeapp.com/ (you will need a free Atlassian

account; we will use this for this exercise)

5.	 Open the Sourcetree app and connect the GitHub account to it by clicking on the Remote

option in the upper navigation bar and then the Add an account… button. Select GitHub

for Hosting Service and click on the Refresh OAuth Token button.

https://desktop.github.com/
https://www.sourcetreeapp.com/

Chapter 4 125

6.	 Once we have connected both services, we can create a new repository. Click on the Create

button in the upper navigation bar. Select the path for your local copy of the repository

(a folder where you will create or copy the Unreal Engine project), then click on Create

Repository on Account and set up the GitHub account.

Figure 4.11 – Exercise 03 – Bitbucket repository creation on GitHub

7.	 Now we are ready to commit and push any changes to the repository. Create or copy an

Unreal Engine project in the folder, and new changes will appear in the Sourcetree window.

Project Structure and Naming Conventions126

Figure 4.12 – Exercise 04 – Sourcetree project interface

Chapter 4 127

Using a revision control tool such as Git is essential for efficient project management, especially

in collaborative environments. Version control allows you to track changes, collaborate with

other developers, and revert to previous versions if needed, ensuring that the project remains

organized and manageable.

As your project grows, proper version control helps prevent data loss and facilitates smoother

teamwork, making it an invaluable tool in any development pipeline.

If you encounter any issues while using Sourcetree or GitHub Desktop, the following help pages

can assist you:

•	 Sourcetree help: https://confluence.atlassian.com/get-started-with-sourcetree

•	 GitHub Desktop help: https://docs.github.com/en/desktop

This brings us to the end of the exercise.

Summary
In this chapter, we explored the critical importance of project structure and naming conventions

in Unreal Engine. Key points covered include establishing a well-defined project hierarchy and

using clear, consistent naming conventions to facilitate asset management and collaboration.

We discussed the Allar Style Guide, emphasizing the principles for project organization, such as

using a top-level folder for project-specific assets and a developer’s folder for local testing, prop-

erly organizing map files, core assets, and large asset sets, and creating a centralized Materials

Library for reusable assets.

Additionally, we covered best practices for asset management, including ensuring proper LOD

setup for meshes, maintaining uniform texture density, and avoiding empty folders and player-

visible Z-fighting. The chapter also addressed the role of source control tools in tracking changes,

safeguarding project versions, and facilitating efficient collaboration, with a focus on integrating

Unreal Engine with popular source control systems such as Git and Perforce. By implement-

ing these guidelines and utilizing the right tools, developers can enhance project organization,

streamline workflows, and improve collaboration, leading to more efficient and successful game

development.

In the next chapter, we will discuss levels within Unreal Engine, focusing on traditional levels

versus World Partition. We will apply the concepts of organization and structure covered in this

chapter to understand how to efficiently manage and organize game levels.

https://confluence.atlassian.com/get-started-with-sourcetree
https://docs.github.com/en/desktop

Project Structure and Naming Conventions128

Subscribe to Game Dev Assembly Newsletter!
We are excited to introduce Game Dev Assembly, our brand-new newsletter dedicated to every-

thing game development. Whether you’re a programmer, designer, artist, animator, or studio lead,

you’ll get exclusive insights, industry trends, and expert tips to help you build better games and

grow your skills. Sign up today and become part of a growing community of creators, innovators,

and game changers.

https://packt.link/gamedev-newsletter

Scan the QR code to join instantly!

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

https://packt.link/gamedev-newsletter
http://packtpub.com/unlock

Part 2
Creating and Detailing

Your Open World
In this part, you’ll be introduced to the practical process of constructing and refining environments

in Unreal Engine. It begins with an overview of how levels and layers are managed, enabling

better control and scalability across large worlds. You’ll then move into terrain creation using the

Landscape and Sculpt tools, learning how to shape and modify natural surfaces. The following

chapters guide you through adding vegetation using the Foliage system and creating materials

that define the look and realism of surfaces.

Together, these chapters establish the key techniques for producing detailed, believable environ-

ments ready for lighting and rendering.

This part of the book includes the following chapters:

•	 Chapter 5, Managing Levels and Layers

•	 Chapter 6, Building Your Landscape

•	 Chapter 7, Populating Your World with Foliage

•	 Chapter 8, Introduction to Materials

5
Managing Levels and Layers

When working with Unreal Engine, understanding the organization of your game world within

levels is crucial. Levels shape the game’s environment, narrative, and performance optimization.

Building on this, consider the two primary approaches to structuring environments. Unreal Engine

offers two distinct approaches to managing game environments: the traditional method using

levels, sublevels, and layers, and the modern World Partition system. Both these approaches ul-

timately share the same structural foundation. Their primary difference lies in how they handle

the loading and unloading of information, especially during runtime. Understanding how each

system works is essential for developing interactive, cinematic, and gamified projects efficiently

and at scale.

In the traditional workflow, this hierarchy can be extended further through sublevels, nested

inside a persistent level. Each sublevel can have its own layers and sets of Actors. This method

supports collaborative workflows by letting teams divide work across different levels without

causing file conflicts. It’s also widely used in games and cinematics, where transitioning between

environments can be scripted or triggered in real time.

The World Partition system, on the other hand, has revolutionized environment-building by

offering a streamlined and optimized approach. This system supports expansive open worlds and

enhances performance management, facilitating collaboration by dividing a level into regions.

This allows multiple team members to work simultaneously without conflict.

Managing Levels and Layers132

Choosing between traditional level/sublevel organization and the World Partition system is crit-

ical during pre-production. This decision impacts the project’s development pipeline and work-

flow. While projects that start with a conventional hierarchy can transition to World Partition,

reverting is not feasible once the World Partition method is adopted. This chapter explores these

concepts, providing a clear understanding of their differences and impact on game development.

Key topics to be covered include the following:

•	 Working with levels

•	 Exploring lighting scenarios

•	 Using layers

•	 Understanding World Partition

•	 Exercise 5.1: Setup and configuration of the level systems

•	 Choosing the right approach to level management

Let’s now take a closer look at each system and how it can be used in practice.

Technical requirements
To continue the development of this chapter, it is necessary to have a PC with Unreal Engine 5.5

(or a later version) installed that meets the recommended requirements by Epic Games and has

internet access: https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-

and-software-specifications-for-unreal-engine.

Working with levels
Levels are the cornerstone of your game’s world in Unreal Engine, encompassing every asset,

environment, character, and interactive object. At its simplest, the organizational hierarchy starts

with levels, which can contain multiple layers. Each layer organizes Actors within the level and

helps maintain a clean and modular structure inside the Content Browser. Therefore, the design

and organization of levels are crucial for both narrative progression and gameplay experience.

In the next section, we will see the aspects related to the creation, storage, organization, manage-

ment, and interactions between levels through sublevels and persistent levels.

 Important note

As this is a theoretical reference chapter, the result is not expected to be visually

expressive. Rather, the focus is on familiarizing you with the corresponding tools.

https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine

Chapter 5 133

Creating levels
Levels can be created in multiple ways within Unreal Engine:

•	 Via the main menu: Navigate to File | New Level… to initiate the creation of a new level.

Figure 5.1 – File | New Level…

 Important note

This section is aimed at new users and will cover the basics of level creation in Un-

real Engine (i.e., creating, saving, and opening levels). If you’re already comfortable

with these concepts, I’d recommend skipping ahead to the Managing levels section.

Managing Levels and Layers134

This action presents various templates to kickstart your level design, including Open

World, Empty Open World, Basic, and Empty Level.

Figure 5.2 – New Level templates

Each template caters to different project needs.

•	 Open World: A level featuring sample content that utilizes the World Partition

feature to construct a vast, streamable open world

•	 Empty Open World: A level employing World Partition without any content

included

•	 Basic: A level equipped with a floor plan, lighting, atmosphere, and exponential fog

•	 Empty Level: A level completely devoid of content

To create a new standard level, choose either Basic or Empty Level. Once you’ve made

your selection, press Create, and a new level will be loaded for you to start working on.

•	 Through the Content Browser: Right-click and select Create Basic Asset | Level. This

method doesn’t grant access to Unreal Engine’s predefined level templates and creates

an empty level, being a more straightforward approach if you understand your needs.

Chapter 5 135

Figure 5.3 – Content Browser | Level

Managing Levels and Layers136

Saving levels
Similar to other assets, you need to save a level to preserve your changes when you close Unreal

Engine or switch to another level. You can save your level using one of the following methods:

•	 From the main menu, go to File, then select Save Current Level

•	 Use the Ctrl + S (Windows) or Cmd + S (Mac) keyboard shortcut

If this is the first time you are saving the level, specify the location and name for Level Asset.

Opening levels
Levels can be accessed in the following ways:

•	 Locating them within the Content Browser and double-clicking

•	 Navigating to File | Open Level and then selecting the desired level from your project’s

assets

Managing levels
The Levels window is the hub for managing your project’s hierarchical level structure, including

the persistent level and any sublevels. This window can be accessed via Window | Levels:

Chapter 5 137

Figure 5.4 – Levels tab

This interface allows for the addition, organization, and visibility management of levels, stream-

lining the development process, especially when working with complex environments or large

development teams.

Managing Levels and Layers138

Persistent level and sublevels
The Persistent Level acts as the master level.

Figure 5.5 – Persistent Level

Meanwhile, sublevels can be dynamically loaded through various methods such as Level Stream-

ing Volumes, Blueprints, or C++ code. This enables a modular approach to level design.

Visibility and operations
You can choose from different operations by right-clicking on any of the levels/sublevels in the

Levels tab.

Chapter 5 139

Figure 5.6 – Level operations

Managing Levels and Layers140

You can also toggle the visibility of a given level on or off by clicking on the eye icon that you can

find on the left of the name of the level.

Figure 5.7 – Visibility

Adjusting a level’s visibility is solely for viewing purposes and does not influence whether the level

will stream into the game during execution. However, if a level is not visible here, it will remain

unaffected during a rebuild, potentially saving significant time with complex levels.

If, by any chance, you already have a sublevel created and nested with the persistent level, you

can move any of the Actors from one level to another by following these steps:

1.	 Select the level you want your Actors to be migrated to.

2.	 Go to the Outliner and choose all the Actors you want to migrate.

3.	 Right-click on them and select Move Selected Actors to Level.

Level Details
The Level Details button, shown by a pencil icon in the Levels window, gives extra informa-

tion about your current levels. Persistent levels show no additional details, but you can switch

to another level using the drop-down menu. For sublevels, you can adjust parameters such as

position, rotation, streaming volumes, and debug color. Advanced settings, such as minimum

unload request time for better performance, are also available.

Chapter 5 141

Level streaming
Level streaming involves asynchronously loading and unloading levels during gameplay to reduce

memory usage and create seamless worlds. This process enables us to load and unload map files

into memory and toggle their visibility during gameplay. By breaking worlds into smaller pieces,

only the necessary parts are rendered and take up resources when needed.

Level streaming options
In Unreal Engine, streaming options control how levels and content are loaded and displayed

during gameplay. These options are key for optimizing performance and ensuring a seamless

player experience, especially in level streaming scenarios. Let’s take an overview of the common

streaming options in the subsequent sections.

Always Loaded
Levels marked with this option are always loaded into memory when the game starts and remain

loaded throughout the game session. This is typically used for essential content required at all

times, such as core gameplay mechanics or persistent environments.

Figure 5.8 – Streaming methods

Blueprint
This option enables levels to be loaded or unloaded based on conditions or events defined in

Blueprints, offering developers precise control for dynamic content loading in response to player

actions, game state changes, or other gameplay events.

Managing Levels and Layers142

Level Streaming Volumes
In Unreal Engine, Level Streaming Volumes control streaming levels based on the player’s posi-

tion. These volumes determine when levels should load or unload, simplifying level management.

Volume-based streaming is easier to use than scripted methods and can be adjusted by resizing

volumes as needed, ensuring smooth level transitions as the game evolves.

There are two primary intentions to utilize Level Streaming Volumes:

•	 In-game behavior: When the player’s viewpoint enters a Level Streaming Volume, the

associated level loads into the game environment, becoming active and interactable.

When the player exits the volume, the level unloads, removing it from active memory.

This method ensures that only relevant parts of the game world are loaded, optimizing

resource usage and performance.

•	 Editor previews: In Unreal Editor, Level Streaming Volumes simulate in-game level load-

ing and unloading behavior. This allows developers to preview how levels will appear and

function based on the camera’s position within the editor, streamlining the level design

and testing process.

Another feature of managing level streaming is the ability to change the time of day in our projects

in cases where it is not otherwise possible (such as with precomputed lighting). This is where

lighting scenarios come into play.

Exploring lighting scenarios
Unreal Engine supports precomputed lighting scenarios, allowing multiple lighting setups in

one level. This combines real-time lighting with efficient precomputed lighting, enabling devel-

opers to switch between lighting configurations such as day and night cycles without real-time

computations, preserving performance and enhancing visuals.

You can find these options in the Levels window by right-clicking on the level you want to modify,

as shown in the following screenshot:

Chapter 5 143

Figure 5.9 – Lighting Scenario

Let’s now take a look at the key aspects of precomputed lighting scenarios:

•	 Flexibility and visual quality: Precomputed lighting scenarios simulate dynamic light-

ing environments within a level, offering the visual richness of real-time lighting. This

method is advantageous in games with changing atmospheres and moods, providing an

immersive experience for players.

•	 Efficiency: Because the lighting is precomputed, the game utilizes highly optimized light-

map data, reducing computational load during gameplay significantly. This efficiency

allows for high-quality lighting effects on various hardware, from high-end PCs to mobile

devices.

When configuring lighting scenarios, we can separate information related to the level’s lighting

and shadows. This approach is a simple and efficient way to manage hardware resources, allowing

the engine to load and apply only the build data for each level as needed.

If you need to further separate or organize information about Actors within the same level, there

are other strategies available, such as layers, which we will discuss next.

Managing Levels and Layers144

Using layers
The Layers panel in Unreal Engine organizes Actors within levels, making it easier to navigate

and edit complex scenes. Actors can be in multiple layers at once, allowing flexible categoriza-

tion. Using a well-structured layer system from the start improves efficiency and organization.

In summary, the Layers panel is essential for managing large levels, ensuring control over the

game’s environment, and a smooth development process.

The process of creating and managing Layers is quite similar to other 3D design or Digital Con-

tent Creation (DCC) programs. You need to access the Layers menu to create and manage them.

Let’s see how to do this.

Creating layers
To access the Layers panel in Unreal Engine, go to Window | Layers in the menu bar. This panel

is crucial for managing the visibility and organization of Actors within your levels.

Figure 5.10 – Layers tab

Chapter 5 145

In the Layers panel, you can create new layers from scratch or by grouping selected Actors from

the Outliner, helping organize complex environments. To rename a layer, right-click on it and

select the Rename option. This simplifies layer management, especially in projects with many

categorized elements.

Right-clicking on a layer also reveals a context menu packed with additional options for layer

management, including but not limited to the following:

•	 Add Selected Actors to Selected Layers: This option quickly assigns the currently selected

Actors in the Viewport or Outliner to the chosen layers, facilitating rapid organization.

•	 Select Actors: This option makes it easy to select all Actors within a layer at once, simpli-

fying processes such as mass editing or inspection.

Figure 5.11 – Layer operations

Managing Levels and Layers146

Working with layers
The Layers panel in Unreal Engine organizes scene Actors and offers detailed views of each layer’s

contents, including Actors’ names and additional details. This control extends to individual layer

management, with visibility toggles for focusing on specific aspects of the scene.

Figure 5.12 – Visibility and layers content

The See Contents button allows deeper examination and management of layer Actors, facilitating

organization and workflow efficiency.

Figure 5.13 – Content in Layers

The Layers panel provides essential tools for managing Unreal Engine projects, whether fine-

tuning scene elements or restructuring the game world.

In this way, we can also manage the Actors within each layer, making the organization process

as detailed as needed. This allows for macro-level organization through layers and micro-level

organization through individual Actors.

Chapter 5 147

Figure 5.14 – Removing content

So far, we have discussed levels as foundational tools for structuring and organizing projects,

along with layers to compartmentalize Actors within the Outliner. However, these are not the

only tools available. Starting with Unreal Engine 5, a more flexible and scalable system was in-

troduced: World Partition.

Don’t worry, despite following a different philosophy, World Partition operates in a way that

is conceptually familiar. The main difference lies in its powerful support for region-based level

streaming and the introduction of One File Per Actor (OFPA). This allows developers to work

within a single unified level while still maintaining structure and control using Data Layers. These

new concepts preserve many of the benefits of the traditional sublevel workflow, while offering

improved performance, collaboration, and scalability.

In the next section, we’ll take a closer look at how World Partition works and how it compares

to previous methods.

Understanding World Partition
World Partition in Unreal Engine transforms how expansive game worlds are managed. It treats

the entire world as a single, persistent level divided into grid cells. These cells are dynamically

loaded and unloaded based on distance, optimizing performance and memory usage for a seam-

less player experience.

Let’s start by learning how to work with World Partition.

Managing Levels and Layers148

Working with World Partition
The World Partition system in Unreal Engine provides developers with an extensive toolkit, in-

cluding streaming sources, runtime grid settings, and World Partition Editor, for constructing

and navigating vast, dynamic game environments efficiently and precisely.

Let’s dive deeper into the system, starting by learning how to enable it.

Enabling World Partition
Activating World Partition in Unreal Engine enhances the management of large game worlds. It

can be enabled using three methods:

•	 Creating a new project from a template in the Games category: Choose a template sup-

porting World Partition from the Games category to set up the project with this system

from the start, ideal for open world games.

•	 Creating a new level using the Open World template: For existing projects, or when

adding new levels, utilize the Open World template designed for World Partition. It

streamlines the integration of World Partition features into specific areas of the game.

Figure 5.15 – Open World New Level template

Chapter 5 149

•	 Converting existing levels to use World Partition: Developers can convert existing levels

to support World Partition, enhancing performance and management of large-scale envi-

ronments. This involves modifying level settings to fit within the grid cell framework and

retroactively applying the benefits of World Partition to previously designed game areas.

Each method offers a way to utilize World Partition, whether starting a new project, expanding

an existing game, or optimizing current levels. Enabling World Partition allows developers to

leverage Unreal Engine’s capabilities for creating immersive, vast game worlds with efficient

resource management and a smoother player experience.

Using World Partition
The World Partition system in Unreal Engine condenses large game worlds into a single persistent

level file, divided into streamable grid cells. It enhances performance by loading only cells near

streaming sources such as the player, minimizing resource usage by dynamically loading relevant

parts of the world.

In the World Partition system, Actors’ management is based on their Is Spatially Loaded setting,

found in the Actor’s Details panel. When enabled, Actors load into memory within the streaming

source range, ensuring that dynamic elements are loaded for player immersion. Disabled Actors

remain loaded regardless of proximity to streaming sources, ensuring that essential elements

are always available.

World Partition in Unreal Engine dynamically loads and unloads grid cells at runtime, influenced

by streaming sources and runtime grid settings.

Streaming sources
Streaming sources, such as the player’s location or designated points in the world, dictate loading

behavior, ensuring a seamless gaming experience. These sources are typically enabled by default,

ensuring smooth operation of the World Partition system.

Managing Levels and Layers150

Figure 5.16 – Enable Streaming Source

Runtime grid settings
The runtime grid in the World Partition system is controlled by settings in the World Settings

panel, specifically in the World Partition Setup section. These settings decide how grid regions

load initially and interact with streaming sources. In developing large worlds, grid regions start

unloaded, except for Actors marked as Always Loaded, ensuring that vital elements such as

environmental backdrops are ready when the level begins.

Chapter 5 151

Developers have the flexibility to manually manage the loading state of grid regions through

the World Partition tab, offering precise control over which parts of the world are active at any

given time.

Loading and unloading regions in the World Partition Editor
The World Partition Editor, accessible via the Window | World Partition | World Partition

Editor menu, provides a graphical interface for managing the streaming of grid cells directly

within the Unreal Editor.

Figure 5.17 – How to get the World Partition Editor

This tool is essential for the following:

•	 Manually loading and unloading regions: Developers can right-click on the grid in World

Partition Editor to load or unload specific regions, facilitating detailed control over the

game world’s structure and optimization.

Managing Levels and Layers152

Figure 5.18 – Loading/unloading regions

•	 Generating a Minimap: You can create a Minimap in the World Partition window for

easier navigation by using the Build Minimap option in the Build menu’s World Partition

section or the World Partition Minimap Builder commandlet. This generates an image

of your World Partition world and displays it within the World Partition window. This

Minimap simplifies the overview of the entire game world, aiding in grid cell management.

Chapter 5 153

Figure 5.19 – Building Minimaps

Creating and managing a Minimap can be resource-intensive, highlighting the scale and com-

plexity of worlds achievable with Unreal Engine’s World Partition system.

With the knowledge of working with World Partition under our belt, let’s now learn about its

components and functionalities.

Components and functionalities of World Partition
World Partition in Unreal Engine simplifies the management and streaming of vast game worlds

by integrating components such as:

•	 Data Layers

•	 Level Instancing

•	 Hierarchical Level of Detail (HLOD)

•	 One File Per Actor (OFPA)

Managing Levels and Layers154

This enhances the quality and performance of the final game, providing players with an immersive

and uninterrupted experience as they explore. This section delves deeper into these components

and functionalities of World Partition, shedding light on how it enhances game development

workflows. Let’s look at them one by one.

Data Layers
Data Layers in Unreal Engine’s World Partition system represent a sophisticated framework de-

signed for organizing and managing Actors within your game world. This system facilitates the

separation of Actors into distinct layers, which can be individually loaded or unloaded, thereby

streamlining the handling of complex environments. Data Layers enhance the development

workflow by allowing dynamic control over the game’s assets directly within the Level Editor

and through gameplay logic implemented via Blueprints.

In the Content Browser, right-click and navigate to the Miscellaneous category, which has the

Data Layer option.

Figure 5.20 – Data Layer in the Content Browser

Chapter 5 155

You can create a new Data Layer by right-clicking on the Content Browser, selecting Miscellaneous,

and then choosing Data Layer in the menu:

Figure 5.21 – Creating Data Layers

Managing Levels and Layers156

This newly created asset needs to be linked with the Data Layer Outliner, which can be found

in the menu under Window | World Partition | Data Layer Outliner. This will bring up the

following screen:

Figure 5.22 – How to add Actors to Data Layers and all of its options

Data Layers simplify collaboration and asset management, minimizing version control issues

and conflicts in large-scale projects.

Data Layers streamline collaboration by reducing the need to check out critical files, enabling

concurrent work without conflicts. They offer dynamic control over Actors’ association with lay-

ers, simplifying scene composition and asset management. Additionally, Data Layers simplify

maintenance by automatically managing the cleanup of associated Actors when layers are deleted.

Overall, Data Layers enhance development efficiency and game design flexibility, empowering

developers to create dynamic and immersive gaming experiences.

Chapter 5 157

Level Instancing
Level Instancing is a workflow designed to enhance and streamline the level editing experience,

allowing you to use one or more Actors to create Level Instances that can be placed and repeated

across your world. This workflow offers benefits such as in-context editing, which lets you see

the immediate impact of your changes on your world, with changes made to one instance being

propagated to all instances when saved. It also enables efficient copying, allowing you to quickly

create templates of any static mesh arrangement, including points of interest, buildings, and

gameplay setups. I present it in the same way the engine does.

HLOD system
The HLOD system is an integral component of Unreal Engine’s World Partition system, designed

to optimize performance in large open world games. It achieves this by dynamically managing

the detail levels of distant, non-interactive objects such as mountains, trees, and cliffs, ensuring

that they remain visible without significantly impacting performance.

Implementing HLOD in World Partition
In World Partition, the HLOD system organizes many Static Mesh Actors into custom layers.

These layers create a single proxy mesh and material for groups of objects, visually representing

unloaded grid cells. This reduces draw calls per frame, essential for performance in large game

environments.

It’s important to note that certain world components, such as landscapes and water, are not

compatible with HLOD Actors due to their dynamic nature or complexity.

Creating HLOD layers
To use the HLOD system, developers need to create a new HLOD layer asset in the Content Brows-

er under Miscellaneous. Once named, this asset helps manage and optimize Static Mesh Actors.

Managing Levels and Layers158

Figure 5.23 – HLOD layer

These are the types of HLOD layers:

•	 Instancing: This method converts Static Mesh assets into Instanced Static Mesh (ISM)

components using their lowest Level of Detail (LOD) settings. It’s perfect for efficiently

creating impostor meshes representing objects such as trees and foliage.

•	 Merged Mesh: In this layer type, several Static Mesh assets are merged into a single proxy

mesh, simplifying rendering.

•	 Simplified Mesh: Similar to the Merged Mesh layer, this one combines Static Mesh assets

into a single proxy mesh. However, it also simplifies the mesh to reduce complexity and

enhance performance.

Working with HLOD layers
To create HLOD proxy meshes, assign Static Mesh Actors to an HLOD layer by selecting them and

specifying the layer. This simplifies managing detailed worlds. After the assignment, execute a

commandlet to generate proxy geometry, reducing rendering load for distant objects. This is

crucial for large-scale environments, ensuring that distant areas are represented without over-

loading the system.

Chapter 5 159

Figure 5.24 – Actor Details for HLOD Layer

By leveraging HLOD Layer within the World Partition system, developers can significantly en-

hance the performance of their Unreal Engine projects, especially those that encompass vast, open

worlds. This system not only optimizes how distant objects are rendered but also streamlines the

development process by providing a clear framework for managing LODs across various game

components.

One File Per Actor strategy
The OFPA strategy in Unreal Engine simplifies large-scale level management and collaboration

by assigning each Actor to its own file. This reduces complexity and conflicts when multiple us-

ers work on the same level. OFPA streamlines development and improves efficiency with source

control systems.

Here are some benefits of the OFPA strategy:

•	 Reduced overlap in collaboration: OFPA minimizes merge conflicts in source control by

isolating changes to individual Actor files. This allows simultaneous work on different

parts of the level without overwriting each other’s work.

•	 Enhanced source control efficiency: Isolating Actor changes makes source control oper-

ations more manageable, especially in large projects with numerous contributors.

Managing Levels and Layers160

•	 Streamlined level modification: Modifications to Actors don’t require resaving the en-

tire level, speeding up the iteration process and facilitating testing and refinement of

gameplay elements.

World Partition makes managing large environments in Unreal Engine easier by automating

streaming and partitioning. It removes the need for manual sublevels, boosting performance and

development efficiency. This allows developers to concentrate on design and gameplay. Whether

starting new projects, converting levels, or adjusting settings, World Partition provides the tools

needed to streamline workflows and improve game world scalability and performance.

Exercise 5.1: Setup and configuration of the level
systems
In this exercise, we will create a level system from scratch. We will go through the steps to add new

levels using Streaming Volume, to facilitate loading and unloading them based on the character’s

position. Let’s see how to achieve this.

Setting up levels and sublevels
Before starting, it is important to have a root folder in your project where we will create our

upcoming levels:

1.	 For this exercise, let’s create two new levels: one using the Basic template and another

using the Empty Level template. This will ensure basic lighting conditions for both levels.

2.	 Drop any assets you want into the second level. Remember to add your sublevel in the

Levels tab and ensure that everything you’re dropping in is done while the level is blue,

indicating it’s at the correct level. You can check this by right-clicking on the World

Outliner and enabling the Level column to see which level assets are placed in.

3.	 After placing assets in our sandbox, ensure that you have GameMode set up for testing.

Go to World Settings and select GameMode under GameMode Override in the Game

Mode section.

Loading and unloading Levels with Level Streaming Volumes
In order to enable the Level Streaming Volume, you will need to follow these steps:

1.	 Select the persistent level with a double click. It will be highlighted in blue.

2.	 Then, add the Level Streaming Volume into the level covering the whole area that is going

to be loaded.

Chapter 5 161

Figure 5.25 – Level Streaming Volume

Managing Levels and Layers162

3.	 When added to the level, it should look like this:

Figure 5.26 – Level Streaming Volume in Level Editor

4.	 Next, access the level details by selecting the desired sublevel from the Levels tab.

Figure 5.27 – Loading the level details

Chapter 5 163

5.	 Then, add a new array into the Streaming Volume and select the actual Level Streaming

Volume (LSV) that will be used:

Figure 5.28 – Choosing the LSV

6.	 Make sure that the boxes from Initially Loaded and Initially Visible are unchecked.

7.	 Once this is done, go back to the Viewport and select Level Streaming Volume. In the

Details panel, set the following properties of the volume:

•	 Editor Pre Vis Only: Unchecked

•	 Disabled: Unchecked

•	 Streaming Usage: SVB Visibility Blocking on Load

Figure 5.29 – Level Streaming Volume details

8.	 Ensure that the Level Streaming Volume is triggered when the viewpoint is inside it. Ad-

just the volume’s distance accordingly if the character’s camera is far away. This ensures

timely level streaming based on the character’s position relative to the volume.

9.	 Try and modify Streaming Usage to SVB Loading not Visible. Check the difference.

Managing Levels and Layers164

With this simple exercise, we have created a level loading and unloading system within Unreal

Engine. These systems help reduce computational load in our projects and can even be used as

temporary tools during the development or level design phases.

Choosing the right approach to level management
All the systems and tools introduced in this chapter must be used in alignment with the specific

goals of your project, your development workflow, and the size and structure of your team.

Whether you’re building immersive worlds or enabling collaboration across disciplines, having a

clear understanding of how levels, sublevels, and layers work together is essential to any produc-

tion. A well-defined structure not only improves organization and performance but also ensures

smoother collaboration and scalability.

Core systems of level management
To help visualize how these systems interconnect, the following conceptual mind map outlines

the three core layers of level management in Unreal Engine:

•	 Levels (base structure):

•	 Organize your world into persistent and sublevels

•	 Enable lighting scenarios for dynamic conditions

•	 Layers (Actor organization):

•	 Group, filter, and manage Actors within a level

•	 Separate logic, visuals, and interactivity

•	 World Partition (dynamic streaming system):

•	 Automate loading based on distance and rules

•	 Use Data Layers to manage runtime and editor loading

•	 Stream content such as AI, audio, and physics efficiently

This layered conceptual view shows a natural progression: from structural foundations (levels),

to editorial and logical grouping (layers), to performance-focused runtime management (World

Partition).

A common point of confusion is the difference between layers and Data Layers. While both are used

to group Actors, their purpose and behavior are quite different. Layers are purely organizational

and exist only within the editor. They help you manage visibility and structure during level design

Chapter 5 165

but have no effect at runtime. Data Layers, on the other hand, are part of the World Partition

system and allow you to dynamically load and unload Actors during gameplay or editor sessions.

This makes Data Layers essential for performance optimization and large-scale collaboration,

especially in open world projects.

Selecting the most suitable workflow
When determining which system to use for managing levels in Unreal Engine, the size and

complexity of your project play a significant role. For large-scale, open world projects, World

Partition is generally the best choice due to its dynamic loading capabilities and efficient handling

of large amounts of assets. This system allows for seamless streaming of world sections, which

is crucial in games such as Fortnite (first released in 2017) and Hogwarts Legacy (first released in

2023), where the player continuously moves through vast environments without hitting perfor-

mance bottlenecks.

On the other hand, the traditional level and sublevel system is more suitable for smaller, linear

games or projects where modularity and separation of levels are key. For instance, a game such

as Inside (first released in 2016) uses this method effectively, allowing for isolated and highly

controlled environments, ideal for narrative-driven gameplay.

Additionally, tools such as OFPA can significantly streamline workflows in both small and large

projects, enabling multiple team members to work on the same level simultaneously without

conflicts. This is especially beneficial in large-scale games such as Gears of War 4 (first released

in 2016), where collaborative world-building is essential to meet project deadlines.

Summary
This chapter introduced Unreal Engine’s systems for structuring and managing environments:

levels, layers, and World Partition. You learned how to organize projects using persistent and

sublevels, manage Actors through layers, and optimize large open worlds via World Partition

tools such as Data Layers, HLOD, and OFPA.

The chapter also guided you through a practical setup with Level Streaming Volumes and provided

criteria for choosing between traditional and modern workflows. By mastering these systems, you

can build scalable, performant worlds suitable for both linear and open world projects.

The next chapter will guide you through crafting immersive environments in Unreal Engine. It

introduces landscape tools for creating realistic outdoor scenes, covering terrain generation.

Managing Levels and Layers166

Subscribe to Game Dev Assembly Newsletter!
We are excited to introduce Game Dev Assembly, our brand-new newsletter dedicated to every-

thing game development. Whether you’re a programmer, designer, artist, animator, or studio lead,

you’ll get exclusive insights, industry trends, and expert tips to help you build better games and

grow your skills. Sign up today and become part of a growing community of creators, innovators,

and game changers.

https://packt.link/gamedev-newsletter

Scan the QR code to join instantly!

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

https://packt.link/gamedev-newsletter
http://packtpub.com/unlock

6
Building Your Landscape

In previous chapters, we discussed how to import external assets into the engine, such as 3D

models and textures, and explored the use of the Quixel Megascans library. We also analyzed

the structure and different types of levels available in the engine, including both legacy options

and the new tools provided by World Partition.

Creating an environment from scratch may seem like a daunting task at first, which is completely

normal. However, by breaking it down into smaller tasks, it becomes much more manageable

than one might think. While it is crucial to consider various aspects of level development, we

must also consider the different assets and the final look we are aiming for.

Therefore, in this chapter, we will begin by exploring a series of techniques that can help us

translate our ideas into the project, along with tools that will allow us to validate whether we

are moving in the right direction.

Subsequently, we will delve into the set of tools specifically designed by Unreal Engine for the

creation of natural environments.

Key topics and exercises to be covered include the following:

•	 Introduction to level design

•	 Scene development: Inspiration and references

•	 Environment creation

•	 Project creation and template selection

•	 Using Unreal Engine’s Landscape tools

•	 Using Unreal Engine’s Sculpt tools

Building Your Landscape168

•	 Exercise 6.1: Creating a terrain from heightmaps

•	 Exercise 6.2: Creating a custom landscape

•	 Exercise 6.3: Sculpting a new terrain

Technical requirements
To continue the development of this chapter, it is necessary to have a PC with Unreal Engine 5.5

(or a later version) installed that meets the recommended requirements by Epic Games and has

internet access: https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-

and-software-specifications-for-unreal-engine.

Introduction to level design
Level design for open worlds in Unreal Engine presents unique opportunities and challenges,

requiring a blend of creativity, technical skill, and strategic planning. Unlike linear and confined

levels, open worlds offer expansive environments that allow players to explore freely and inter-

act with a diverse range of elements. This freedom demands a meticulous approach to design to

ensure that the world feels immersive, coherent, and engaging.

Scene development: Inspiration and references
Undoubtedly, one of the most important tasks before starting any creative project that involves

building a scene is to have a solid concept art or storyboard (in the case of cinematics) to under-

stand firsthand the scene we are about to develop, and, of course, a set of references to guide us

along the way. This is important for several reasons:

•	 Visual guidance: Concepts and references provide a clear visual guide for designers and

artists. These can help establish the desired tone, style, and atmosphere for the open

world being created.

•	 Consistency: Having visual references ensures aesthetic consistency throughout the

world. This is crucial for maintaining visual cohesion and player immersion in the game

environment.

•	 Inspiration and creativity: References and concepts can inspire new ideas and creative

approaches.

•	 Efficiency in development: Having a clear visual direction from the beginning reduces

the likelihood of extensive iterations and revisions later in the development process.

https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine

Chapter 6 169

Once the corresponding references have been gathered and the desired look and type of environ-

ment have been decided upon, the next step is environment creation.

Environment creation
Within level design, there are typically two approaches. On one hand, artists work with prebuilt

models and structures, providing a clear and immediate perception of the level’s intentions. On

the other hand, the iterative design approach starts with simple shapes and geometries, gradually

shaping and refining the level.

Let’s explore how each method works.

Selecting the environment creation method
Currently, there are two techniques that are most frequently used in the industry to create an

environment:

•	 Fully modeled environment

•	 Landscape tools

Each method has a series of requirements to consider, such as the materials to be used, non-

destructive workflow options, and flexibility in making changes. Let’s look at each one in detail.

Fully modeled environment
The fully modeled environment, also known as environment modeling, is a common technique

in video games where every surface and contour, whether natural or artificial, is created within a

modeling tool such as 3ds Max, Maya, Blender, and Houdini. This approach allows for complete

control over terrain resolution, polygon count, scale, and other details. Subsequently, materials

and textures can be added to enhance the realism and visual appeal of the environment. This

method is often favored when precise control over every aspect of the environment’s design is

desired, and when specific artistic or technical requirements need to be met.

You can see how artist Nikolay Usov has used a set of prebuilt assets to create a scene that close-

ly resembles real-world expectations here (in the Blockout bullet): https://blog.csdn.net/

shebao3333/article/details/128938792.

 Important note

The following examples cited in the case scenarios below reference online visual

sources. You can view them at the provided links for context.

https://blog.csdn.net/shebao3333/article/details/128938792
https://blog.csdn.net/shebao3333/article/details/128938792

Building Your Landscape170

The same can be said for Edgar Martinez, who, based on level and space design conceptualization,

developed a level for Uncharted 4 (first released in 2016). You can view his work (sixth image from

the top) here: https://www.artstation.com/artwork/5gJ8A.

Landscape tools
Unreal Engine 5 (UE5) offers a comprehensive set of tools specifically designed for building,

designing, and customizing landscapes. These Landscape tools cater to the essential needs of

level design artists.

The primary advantage of using Landscape tools within the engine is the immediate feedback

loop they provide. Changes made to the landscape are instantly reflected in the scene, including

interactions with the environment, lighting, materials, and other assets. This facilitates rapid

iteration and adjustments to achieve the desired environmental aesthetics.

Beyond real-time visualization, UE5’s Landscape tools boast a wide array of features. These

include precise terrain sculpting, realistic textures and materials, creation of water bodies such

as rivers and lakes, and efficient vegetation generation through foliage systems.

Additionally, these tools seamlessly integrate with other systems and tools within UE5, ensuring

cohesive and detailed world creation. They are designed to be intuitive and user-friendly, em-

powering level design artists to focus on creativity and vision without grappling with technical

complexities.

In the Rebirth project, the importance of blocking by the landscape to define scale and environ-

ment readability is quite evident, as the building is composed of simple geometric shapes. You can

view the image here: https://cdn2.unrealengine.com/Unreal+Engine%2Fspotlights%2Fquix
el-creates-real-time-photoreal-cinematic-rebirth-in-ue4%2Fblog_body_archviz2_img-

1640x882-14fa65b6847e00527eea412ebdee56892b86e1d6.jpg

Regardless of the method employed, one of the most crucial phases in environment creation is

blockout, which we’ll explore in the next section.

Understanding the blockout process
Also known as the graybox level, blockout is a rapid draft of a level created using simple 3D

models, devoid of final details such as textures or materials. Its primary objective is to prototype

the level, test fundamental elements, scales, and references.

https://www.artstation.com/artwork/5gJ8A
https://cdn2.unrealengine.com/Unreal+Engine%2Fspotlights%2Fquixel-creates-real-time-photoreal-cinematic-rebirth-in-ue4%2Fblog_body_archviz2_img-1640x882-14fa65b6847e00527eea412ebdee56892b86e1d6.jpg
https://cdn2.unrealengine.com/Unreal+Engine%2Fspotlights%2Fquixel-creates-real-time-photoreal-cinematic-rebirth-in-ue4%2Fblog_body_archviz2_img-1640x882-14fa65b6847e00527eea412ebdee56892b86e1d6.jpg
https://cdn2.unrealengine.com/Unreal+Engine%2Fspotlights%2Fquixel-creates-real-time-photoreal-cinematic-rebirth-in-ue4%2Fblog_body_archviz2_img-1640x882-14fa65b6847e00527eea412ebdee56892b86e1d6.jpg

Chapter 6 171

During this phase of development, the focus is on spatial experimentation, without getting bogged

down by intricate details. Thus, it serves as a valuable tool in the early design stages, helping

to establish the level’s structure and achieve a balanced design, scale, and metrics. While this

technique might seem basic, it is much more powerful than it appears. Many games replace the

geometric shapes with final assets only in the later stages of development, allowing for iterative

improvements in gameplay without the overhead of detailed assets early on.

Blockout is critical in the level design process for the following reasons:

•	 It provides a robust foundation for refining the game environment

•	 It enables designers and artists to explore various ideas and solutions without committing

to unnecessary details early on

•	 It saves time and resources by prioritizing the establishment of a solid structure and

gameplay flow before progressing to the detailed phase

We can see how Brian Lesiangi has created a 3D environment using boxes and cylinders here (in

the Blockout section): https://www.unrealengine.com/en-US/tech-blog/balinese-temple-

telling-a-powerful-story-through-ue4-environments.

Here’s how the process works:

1.	 When starting the blockout phase, our primary tools will be those provided by the en-

gine itself, such as Landscape, BSP, or basic geometric models. The key is to focus on

functionality over details and experiment with different primitives by moving, rotating,

and scaling them to achieve the desired outcome. Using color codes can also be helpful

to visualize the scene’s overall appearance based on future material colors.

2.	 As we progress to more advanced stages, we can incorporate 3D objects, which are crucial

for scene decoration (set dressing) to enhance realism. Quixel Megascans currently offers

a wide variety of materials and 3D objects, both open and closed, which can be used to

enhance our landscape.

We can see a clear example of set dressing, where Pasquale Scionti enhances the scene using Unreal’s

landscape along with meshes and resources from Megascans, here: https://cdnb.artstation.
com/p/assets/images/images/038/615/101/large/pasquale-scionti-new2.jpg?1623594223

.

https://www.unrealengine.com/en-US/tech-blog/balinese-temple-telling-a-powerful-story-through-ue4-environments
https://www.unrealengine.com/en-US/tech-blog/balinese-temple-telling-a-powerful-story-through-ue4-environments
https://cdnb.artstation.com/p/assets/images/images/038/615/101/large/pasquale-scionti-new2.jpg?1623594223
https://cdnb.artstation.com/p/assets/images/images/038/615/101/large/pasquale-scionti-new2.jpg?1623594223

Building Your Landscape172

As we have already seen in Chapter 2, Megascans is a resource and asset library integrated into

Unreal Engine that accelerates the creation of landscapes with its collections focused on natural

environments.

Figure 6.1 – Quixel Bridge – Natural collection

When starting any project, we must recognize that we are working with a blank canvas. It is essen-

tial to determine which method of work best suits our project and to align our efforts accordingly.

Project creation and template selection
As previously mentioned, when starting a project, we face a blank canvas. It is crucial to under-

stand the type of project we are developing and choose a template within Unreal Engine that

initially includes the elements we need.

Creating a blank project
To begin developing our environment in Unreal Engine, we’ll start by creating a new blank project.

In my case, I’m using version 5.3 of the engine and selecting the Third Person template from the

Games category in the Launcher:

Chapter 6 173

Figure 6.2 – Epic Games – Template selection

The next step is to create a folder (we’ll call it OpenWorldLevel) where we can add our own assets

specific to our project.

This is a good practice to consolidate all project-related information in one location. If we need

to migrate to a new project in the future, redirecting asset locations will be quicker, and all proj-

ect-related information will be in one place.

Within this folder, we’ll add a new level. To do this, we go to the File menu and select the New

Level… option (Ctrl + N on the keyboard):

Building Your Landscape174

Figure 6.3 – File menu | New Level…

Finally, we can choose from different default levels to select. We will choose the Open World

option:

Figure 6.4 – New Level creation

Chapter 6 175

After creating our level, it’s a good time to save it in the OpenWorldLevel folder created in the

previous step before starting to work on any modifications:

Figure 6.5 – Save new Level

If we take a moment to consider what we have, we should currently have a World Partition Level

created, with default lighting and a landscape already set up:

Figure 6.6 – Reference Level

Building Your Landscape176

Deleting the existing landscape
The next step is to delete the existing landscape so we can generate our own. Simply follow these

steps:

1.	 Select the landscape in the Outliner of Unreal Engine.

2.	 Expand the drop-down menu and select all components.

3.	 Delete them by pressing the Delete key on the keyboard.

Figure 6.7 – Select Landscape Components

Chapter 6 177

4.	 Finally, select the container (Landscape) and delete it in the same manner.

Figure 6.8 – Deleted landscape

At this point, we can begin using the Landscape tools.

Using Unreal Engine’s Landscape tools
For the Landscape tools in Unreal Engine, we first need to switch the current engine mode

(Selection Mode) to Landscape Mode:

Figure 6.9 – Landscape Mode

Building Your Landscape178

We will be greeted by the following menu:

Figure 6.10 – Landscape menu

With the tools in Landscape Mode, you can create custom environments by modifying the existing

terrain or building new terrain from scratch.

Chapter 6 179

There are three stages to working with Landscape:

•	 Manage: Creates a new landscape, adjusts its size, and manages its properties

•	 Sculpt: Edits the heightmap to shape the terrain

•	 Paint: Edits the weight maps to blend between different material layers

Let us learn about each stage in detail.

Manage tools
The Manage section includes tools for the landscape as a whole, such as New and Import, as well

as tools for managing its tiles or components: Select, Add, and Delete. It also provides controls

for managing additional splines associated with the landscape splines.

Figure 6.11 – Manage tools

Here’s a summary of the use of each tool:

•	 New: Creates a new landscape

•	 Import: Imports a landscape from a file created in a third-party application such as

Houdini or Gaea or allows the use of real-world satellite data

•	 Select: Selects components to modify their properties

•	 Add: Adds additional components to the landscape

•	 Delete: Removes components from the landscape

•	 Splines: Creates splines for roads, pathways, or other meshes that need to follow the

terrain

You can create a new landscape from scratch in the Create New section of the new tool panel.

Building Your Landscape180

Here’s an overview of the tools used to create our terrain:

Figure 6.12 – Overview of Landscape creation details panel

We’ll delve into the functions of the options annotated in Figure 6.12 and, later, in Figure 6.16 in

the next section.

Landscape details panel
Let’s look at each of the options in detail and what they allow us to do:

•	 Create New: Creates a new landscape in your level.

•	 Import from File: Imports a landscape heightmap created in an external program.

•	 World Partition Grid Size: Gives the number of components per landscape streaming

proxies per axis.

•	 Material: Assigns a material to your landscape.

•	 Location: Gives the location of the new landscape.

•	 Rotation: Gives the rotation of the new landscape.

•	 Scale: Gives the scale of the new landscape. This determines the size of each quad in the

landscape, defaulting to 100 units.

•	 Section Size: Gives the number of quads in a single component section. Each section is

rendered independently, providing control over the LOD transitions within a component.

•	 Sections Per Component: Gives the number of sections in a single component. This, com-

bined with the section size, determines the size of each component. A component is the

basic unit for organizing landscape data.

•	 Number of Components: Gives the number of components in the X and Y directions,

determining the overall size of the landscape.

Chapter 6 181

•	 Overall Resolution: Gives the overall resolution of the new landscape in vertices, excluding

overlapping vertices between neighboring components.

•	 Total Components: Gives the total number of components that will be created for this

landscape.

•	 Fill World: Makes your landscape as large as possible.

•	 Create: Creates your landscape in the world using the specified settings.

Everything related to the initial creation of our terrain—composition, area, structure, and geo-

metric detail—is defined in the landscape details panel. Understanding it is crucial for generating

the appropriate landscape for the project we need.

Landscape Components
Although the information we’ve covered is relatively straightforward, it’s important to grasp

the internal structure of landscapes and their role in meeting project resolution requirements.

Landscapes are divided into multiple Landscape Components, which are the core elements in

Unreal Engine for rendering, visibility calculations, and collision. Each Landscape Component

is uniform in size and always square. The size of these components is set during the creation of

the landscape and is based on the overall size and LOD required.

Figure 6.13 depicts a simple landscape (outlined in green) consisting of four Landscape Components.

Each component is composed of a single quad, and one has been separated to demonstrate how

vertices are duplicated at the boundaries where Landscape Components meet.

Figure 6.13 – Landscape Components composition

Components can optionally be subdivided into either one or four (2x2) subsections to increase

landscape resolution. These subsections are the basic unit for Landscape LOD calculation.

Using four (2x2) subsections provides the same size heightmap as using four times as many

Landscape Components with only one subsection each, but using fewer Landscape Components

improves performance.

Building Your Landscape182

Each section’s size (in number of vertices) must be a power of 2 value (up to 256x256) to allow

different LOD Levels to be stored in the texture’s mipmaps. This determines the number of quads

in a Landscape Component: either a power of 2 value minus 1 (for one section per Landscape

Component) or a power of 2 value minus 2 (for four sections per Landscape Component).

The following example in Figure 6.14 shows an individual Landscape Component (outlined in

green) containing four sections. Each section consists of nine (3x3) quads. Once again, you can

observe that vertices are duplicated where the sections meet:

Figure 6.14 – Landscape component subsections

A Landscape Actor is color-coded to simplify the identification of each type of Landscape

Component. The edges of the landscape are highlighted in yellow; each component edge is in

light green, section edges are in medium green, and individual landscape quads are in dark green:

Figure 6.15 – Landscape configuration readout

Chapter 6 183

In Figure 6.16, we can see the default configuration for creating landscapes in Unreal Engine.

Figure 6.16 – Default Landscape settings

One of the most notable aspects of the default settings is understanding that by keeping the scale

at 100%, we can determine the size and area of our terrain. Each section size consists of modules

of 1x1 meters. Therefore, with the default section size of 63x63, each Landscape Component mea-

sures 63 meters x 63 meters. If we multiply this by the number of components in the initial setup

(63x8), we get an area of 504x504 meters, which we can confirm in the Overall Resolution setting.

 Important note

The Overall Resolution setting in any Unreal Engine landscape shows the number

of vertices, so the result will always be one vertex higher than the product of Section

Size x Number of Components.

Building Your Landscape184

Once satisfied with the initial configuration of our landscape, we can click the Create button to

finalize the landscape. From this point onward, we will have access to the second working tab,

called Sculpt.

Using Unreal Engine’s Sculpt tools
Now that we have a Landscape surface to work with, we can use the Sculpt tools to adjust the

terrain’s height and create valleys, hills, mountains, and other features. Different layers can be

used to isolate areas or distinguish between broad sculpting changes and finer details. To create

a new layer or configure existing ones, right-click in the Edit Layers section:

Figure 6.17 – Landscape Sculpt tools

Chapter 6 185

Let’s explore the tools available in this working mode:

•	 Sculpt: Raise the terrain by left-clicking and moving the mouse within the selected layer.

Hold Shift while clicking to lower the terrain.

•	 Erase: Reset sculpting changes within the selected layer.

•	 Smooth: Smooth out sculpting changes within the selected layer. Depending on the brush

falloff settings, terrain edges will flatten around the brush edges.

•	 Flatten: Flatten the terrain in the selected layer based on the height of the initial left-click

position.

•	 Ramp: Select two points on the terrain and press Add Ramp in the tool settings to create

a ramp within the selected layer.

•	 Erosion: Simulate erosion caused by soil movement within the selected layer.

•	 Hydro: Simulate erosion caused by rainfall within the selected layer.

•	 Noise: Add noise within the selected layer to randomly raise and lower the terrain, cre-

ating a more natural look.

•	 Visibility: Mask out individual quads in the landscape to create holes, which is useful for

making caves or entrances to underground or hidden areas.

•	 Mirror: Copy one side of the selected layer to the other side, facilitating the creation of

mirrored terrain.

•	 Copy: Copy and paste areas of terrain. You can also import and export copied terrain

areas to or from disk.

•	 Select: Choose a region of the landscape to use as a mask for other tools, such as Copy

or Mirror.

The use of these tools is mostly self-explanatory in many cases. Clicking on each tool reveals that

several of them share common options, even with landscape painting tools.

Building Your Landscape186

Let’s look at the most common and frequently used brush options.

Figure 6.18 – Landscape Sculpt brush options

Let’s explore what each of the available options allows us to do:

•	 Brush Type: The different types of brushes available.

•	 Brush Falloff: Determines the falloff behavior of the brush. It defines how quickly the

effect of the brush diminishes toward the edge.

•	 Tool Strength: Adjusts the strength or intensity of the brush effect on the terrain.

•	 Brush Size: Sets the radius or size of the brush.

Chapter 6 187

•	 Brush Falloff: Specifies the amount of falloff at the edge of the brush, expressed as a frac-

tion of the brush’s size. A value of 0 means no falloff, while a value of 1 means maximum

falloff across the entire brush radius.

All these properties affect the final look of the terrain. For the brush properties, there are additional

options to fine-tune the brush behavior:

Figure 6.19 – Landscape Sculpt Type / Falloff Options

Let’s see where they are located and their description, reading from left to right:

•	 Brush Type:

•	 Circular Brush Type: Creates a circular, rounded terrain effect

•	 Alpha Brush Type: Applies a mask image to orient the brush stroke

•	 Pattern Brush Type: Patterns a tile mask across the terrain

•	 Component Brush Type: Applies changes to the entire Landscape Component

•	 Brush Falloff:

•	 Smooth Brush Falloff: Provides a smooth transition along the edges of the brush

•	 Sharp Brush Falloff: Results in a sharp transition at the edges of the brush

•	 Spherical Brush Falloff: Offers a smooth transition from the center to the edges

of the brush

•	 Tip Brush Falloff: Provides an inverted smooth transition along the edges of the

brush

Now that we have explored the main tools for both landscape creation and editing, let’s proceed

to work on our first custom landscape.

 Important note

Experiment with the sculpt brush settings to find the right balance of falloff, strength,

and brush size for creating mountains, hills, paths, and more. Try using small

semi-circular motions to add variation to your terrain.

Building Your Landscape188

Exercise 6.1: Creating a terrain from heightmaps
Throughout this chapter, we have discussed different approaches to creating landscapes and the

tools available to modify them. In this exercise, we will explore one of Unreal Engine’s strongest

features for building large-scale terrains: the ability to import external data through heightmaps.

Heightmaps are grayscale images that represent elevation data. Darker tones correspond to lower

areas of the terrain, while lighter tones represent higher points. This method is extremely flexible,

as many DCC tools (such as Gaea, World Machine, or Houdini) use heightmaps to transfer terrain

information between programs.

Let’s see how this process works inside Unreal Engine:

1.	 In the Unreal Engine Editor, switch to Landscape Mode, located at the top left of the screen.

2.	 In the Manage section, select Import from File.

3.	 In the Heightmap File field, click the three dots (…) and select the heightmap. You can use

a heightmap you created in a terrain tool or download a free heightmap available online.

4.	 Unreal will generate a preview, display the Overall Resolution value, and propose a com-

ponent layout. Your values may differ from the example shown in Figure 6.20, and this is

normal; simply confirm that Unreal has recognized your heightmap correctly.

Figure 6.20 – Exercise final configuration

 Note

Make sure your heightmap is a 16-bit grayscale file (PNG or RAW16). Avoid

using 8-bit images, as they will produce visible banding artifacts.

Chapter 6 189

5.	 Click Import to generate the terrain. This process can take a while because Unreal not

only interprets the heightmap image but also slices it into components so that World

Partition can manage and stream it efficiently.

Figure 6.21 highlights the main controls used in this process (steps 2 to 5):

Figure 6.21 – Import from File Landscape process

 Note

If your chosen heightmap is too large and causes performance issues, consider using

a lower-resolution version. Most free heightmap libraries offer multiple sizes (for

example, 1K, 2K, and 4K). Using a lower resolution will make the import process

faster and lighter on your system.

Building Your Landscape190

Once the process is complete, the resulting landscape should look as in Figure 6.22:

Figure 6.22 – Import from File result

Troubleshooting
Sometimes, after the import process, the scene may appear empty except for a few cubes, as

shown in Figure 6.23:

Figure 6.23 – Empty import from file

Chapter 6 191

To fix this issue, do the following:

1.	 Go to Window | World Partition and enable World Partition Editor (if it is not already

active).

2.	 In the World Partition window, you will see a representation of the map.

3.	 Drag a selection area in the grid, right-click, and choose Load Region From Selection, as

shown in Figure 6.24:

Figure 6.24 – Load Region From Selection

This will load the portion of the landscape into the Viewport.

Importing terrains through heightmaps is a powerful workflow in professional environments.

In addition to elevation data, you can also import masks to drive material blending and achieve

more natural results.

Building Your Landscape192

Exercise 6.2: Creating a custom landscape
Now that we understand the tools of our landscape, let’s create a custom surface:

1.	 In the Unreal Engine Editor, switch to Landscape Mode, located at the top left of the screen.

2.	 In the Manage section, create a new landscape.

3.	 Check the Enable Edit Layers checkbox.

4.	 Set World Partition Grid Size to 2 and World Partition Region Size to 16 accordingly.

5.	 Reset the Location value of the landscape to start at (0, 0, 0).

6.	 Adjust the Scale on the X and Y axes to 50%.

7.	 Set Section Size to 127x127 quads.

8.	 Set Sections Per Component to 2x2 sections.

9.	 Click Create to generate the landscape.

As a verification method, we can change the Viewport view (top-left corner) to the Top view of our

project and measure the surface area of the generated terrain. It should measure approximately

1015 meters. This is because we have adjusted the scale, making the terrain surface smaller but

increasing its vertex resolution for better sculpting results.

 Note

For supplementary guidance and technical details, consult the Epic Games documen-

tation on landscape heightmaps: https://dev.epicgames.com/documentation/
en-us/unreal-engine/importing-and-exporting-landscape-heightmaps

-in-unreal-engine.

https://dev.epicgames.com/documentation/en-us/unreal-engine/importing-and-exporting-landscape-heightmaps-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/importing-and-exporting-landscape-heightmaps-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/importing-and-exporting-landscape-heightmaps-in-unreal-engine

Chapter 6 193

Figure 6.25 – Exercise final configuration

Exercise 6.3: Sculpting a new terrain
Now that we have a custom landscape, let’s sculpt the shape of our terrain on it:

1.	 In the Sculpt section, select the Sculpt tool.

2.	 Set Tool Strength to 0.2 and Brush Size to 8192 to begin sculpting the landscape block

out (refer to the references mentioned at the beginning of the chapter).

3.	 In the Edit Layers section, select the current layer (usually the only one available) and

click the + sign to add a new one:

Figure 6.26 – Add new sculpt layer

 Important note

In this first part, we scaled the terrain down to 50% (step 6) with the intention of

achieving higher resolution in the resulting landscape geometry. To compensate for

the scale difference, we increased Set Sections Per Component to 2x2 (step 8). These

steps are optional because while they provide better resolution for the landscape,

they come at a higher performance cost.

Building Your Landscape194

4.	 The Pick Landscape Edit Layer Class window will appear. Pick Landscape Edit Layer

and hit Select:

Figure 6.27 – Pick Landscape Edit Layer Class window

5.	 Rename the new layer to Blocking.

6.	 Using the Sculpt brush, begin shaping the terrain, focusing on its overall form.

7.	 Once you are satisfied with the result, you should have something like this:

Figure 6.28 – Landscape blocking stage

8.	 To begin the detailing phase, create a new layer, similar to what we did in step 3 of this

exercise, and name it Details.

9.	 Using the Smooth tool with a strength value of 0.7, smooth out the initial iterations of

the terrain.

Chapter 6 195

10.	 Next, use the Erosion and Hydro tools to simulate weathering effects caused by wind

and rain. Feel free to experiment with the tool parameters to achieve different effects. I

ended up with this:

Figure 6.29 – Landscape first details stage

11.	 For the final details, continue using the Sculpt tool, but this time, choose the Alpha Brush

option under Brush Type. Experiment with different textures and use a low intensity

(between 0.2 and 0.35) to add the necessary deformations.

Figure 6.30 – Landscape blocking versus details layer

Building Your Landscape196

12.	 Finally, use the Smooth tool again to improve the transition and blend the new terrain

deformations seamlessly.

Figure 6.31 – Final Landscape result

13.	 Once finished, you can switch back to Selection Mode. If you have the third-person char-

acter set up, you can play the level and experience firsthand the result of your landscape.

This allows you to interact with and explore the environment you’ve created.

Figure 6.32 – Your first landscape done

Chapter 6 197

Developing levels and open worlds requires not only creative iteration but also significant amounts

of technical research and testing. Achieving accuracy in scale, readability, and gameplay flow takes

time and careful planning, as every design choice can affect the player experience.

Summary
In this chapter, we examined the detailed process of creating landscapes in Unreal Engine, high-

lighting the importance of each step in the development workflow. We started by discussing the

role of visual references, such as concept art and storyboards, which are crucial for maintaining

consistency, sparking creativity, and enhancing efficiency. These references offer a clear visual

guide, ensuring that the game’s tone, style, and atmosphere remain cohesive and immersive.

We then explored two main methods for environment creation: building a fully modeled envi-

ronment and using Unreal Engine’s Landscape tools. The blockout process was emphasized as

a key phase for prototyping the level’s structure with simple models, providing a foundation for

further development.

Practical application was reinforced through exercises that guided the creation of a custom land-

scape with specific grid, region, and scale settings. We also practiced sculpting terrain using

various tools and layers to achieve desired features. These exercises highlighted the importance

of iterative design and real-time adjustments, fostering a dynamic and flexible workflow.

In the next chapter, we will explore the foliage tools to help populate our terrain with various

types of vegetation.

Additional resource

To complement what you have learned in this chapter, you may also find it

useful to explore this resource from Epic Games’ Education team: https://dev.
epicgames.com/community/learning/talks-and-demos/KBd/building-

natural-environments-in-unreal-engine. It demonstrates similar

techniques in practice.

https://dev.epicgames.com/community/learning/talks-and-demos/KBd/building-natural-environments-in-unreal-engine
https://dev.epicgames.com/community/learning/talks-and-demos/KBd/building-natural-environments-in-unreal-engine
https://dev.epicgames.com/community/learning/talks-and-demos/KBd/building-natural-environments-in-unreal-engine

Building Your Landscape198

Subscribe to Game Dev Assembly Newsletter!
We are excited to introduce Game Dev Assembly, our brand-new newsletter dedicated to every-

thing game development. Whether you’re a programmer, designer, artist, animator, or studio lead,

you’ll get exclusive insights, industry trends, and expert tips to help you build better games and

grow your skills. Sign up today and become part of a growing community of creators, innovators,

and game changers.

https://packt.link/gamedev-newsletter

Scan the QR code to join instantly!

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

https://packt.link/gamedev-newsletter
http://packtpub.com/unlock

7
Populating Your World
with Foliage

The use of vegetation in our environment not only adds an aesthetically pleasing and visually

attractive component, but it can also deepen the narrative, convey emotions, and create a unique

atmosphere. From dense forests to vast fields of grass, on-screen vegetation can play a crucial

role in setting the scene and characterizing the depicted environment. In this chapter, we will

explore how the strategic use of vegetation can enrich the cinematics of a setting, in terms of both

narrative and cinematic aesthetics.

To achieve this, Unreal Engine offers a set of tools that, much like a paintbrush with all its inher-

ent features, allows us to quickly add or remove clusters of geometries. With Foliage Mode, it’s

possible to populate a large area in a short amount of time. It’s important to note that this mode

is designed to be used as a detailed element within a scene, enabling us to place vegetation wher-

ever we need it. Additionally, Unreal Engine already includes tools that allow us to procedurally

add vegetation to cover vast stretches of terrain.

Topics to be covered include the following:

•	 Understanding the terminology

•	 Using Foliage Mode

•	 Static Mesh Foliage optimization

Populating Your World with Foliage200

Technical requirements
The technical requirements for this chapter follow the same specifications as Chapter 1 and the

rest of the chapters that follow; please refer to that section.

That said, let’s remember the recommended hardware for working with Unreal Engine 5 (version

5.5 or later) with Lumen Global Illumination and Reflections and Nanite virtualized geometry:

•	 Operating system: Windows 10 64-bit version 1909 revision .1350 or higher, or versions

2004 and 20H2 revision .789 or higher. Support for DirectX 12 Agility SDK.

•	 Processor: Quad-core Intel or AMD, 2.5 GHz or faster.

•	 Memory: 8 GB RAM.

•	 Software Ray Tracing: This feature may require a video card using DirectX 11 with support

for Shader Model 5.

•	 Hardware Ray Tracing: Requires Windows 10 build 1909.1350 or newer with DirectX 12

support and specific compatible graphics cards (e.g., NVIDIA RTX-2000 series or newer,

AMD RX-6000 series or newer, Intel® Arc™ A-Series graphics cards or newer).

•	 Internet access: An internet connection is required to download the plugins and additional

content required for this chapter.

Understanding the terminology
Here’s a list of terminology used in the chapter:

•	 Actor Foliage: This refers to a vegetation asset that can be assigned a Blueprint containing

instances of the Actor within the scene. This type of Actor offers much more flexibility and

interactivity but can have a higher performance cost due to its dynamic nature.

•	 Static Mesh Foliage: This type of vegetation uses instanced meshes, designed to work

through a brush directly on the landscape. It is better suited for a non-destructive veg-

etation workflow.

•	 Brush: A tool in the form of a brush that, through size, strength, fade, and density prop-

erties, allows us to paint vegetation onto the scene.

•	 Density: This refers to the number of vegetation instances painted in the scene per 10

square meters.

•	 Cull Distance: This is the drawing distance for vegetation beyond which it is no longer

rendered on screen. This parameter can be modified for specific types of vegetation. By

default, this distance is set, and initially, all vegetation is rendered.

Chapter 7 201

Now that we have a broad understanding of the most important concepts, let’s see how to access

Foliage Mode.

Using Foliage Mode
Just like with the Landscape tools, everything related to foliage takes place in a specific mode

within the editor. Let’s see how to access it.

Enabling Foliage Mode
After creating an environment, as discussed in Chapter 6, we now have the space needed to place

our vegetation. To do this, we need to access the editing modes. We can do this in the Level Editor

Toolbar: open the Modes dropdown, just as we did when creating our landscape. In this case, we

select Foliage (Shift + 3) to open the tool that allows us to paint vegetation into the scene.

Figure 7.1 – Foliage Mode

It is worth mentioning that Foliage Mode generates instances to reduce draw calls, as the number

of elements in the scene can be considerable. Once Foliage Mode is opened, we will see a panel

with two clearly differentiated areas:

•	 Tool Palette: Located at the top, this area contains the main tools used in creating foliage

in our projects, such as Select, All, Deselect, Invalid, Lasso, Paint, Reapply, Single, Fill,

Erase, Remove, and Move.

Populating Your World with Foliage202

•	 Foliage Palette: Located at the bottom, this is where we can add foliage either by clicking

the + Foliage button or by dragging our Static Meshes and/or Static Mesh Foliage directly

from the Content Browser.

Figure 7.2 – Tool Palette (1) and Foliage Palette (2) areas

Since we have not yet specified the type of vegetation we want to paint, there is no data available

to work with. To proceed, we need to assign various Static Meshes to the palette area. In this area,

we will select the different meshes that we will paint into the scene.

We will use Megascans vegetation, which can be downloaded via Quixel Bridge. Wild Grass is

a good example to start working with.

 Recommendation

Working with low-quality settings allows us to download low-poly meshes and,

most importantly, the textures will be 1024 resolution, which is sufficient for low

vegetation. In the Static Mesh Foliage optimization section of this chapter, we will

review measures to improve performance. These assets already have Static Mesh

Foliage created in the Foliage folder, so simply dragging them into the palette will

be sufficient without needing to recreate them.

Chapter 7 203

Figure 7.3 – Wild Grass

When importing Megascans vegetation into the Content Browser, a Foliage folder is created

with Static Mesh Foliage assets. These assets are ready to be dragged into the palette to start

working. If we drag Static Meshes directly, Unreal will create the Static Mesh Foliage and prompt

for a path to save them.

Figure 7.4 – Static Mesh Foliage organization structure

Populating Your World with Foliage204

Once the various types of vegetation are assigned to the palette, the first thing we notice are small

thumbnails of the models. In the upper-left corner, a blue checkmark indicates that the item is

selected and will be painted. If it is not selected, the thumbnail appears dark.

In the upper-right corner, a disk icon allows us to save the Static Mesh Foliage created when

dragging the Static Mesh. In the lower-right corner, the number 0 indicates the number of ele-

ments being drawn.

Figure 7.5 – Static Mesh Foliage on palette

Additionally, we will notice that our cursor has changed to a blue semi-sphere, indicating the

brush size we will use to paint in the scene. We will delve into how to paint vegetation shortly,

focusing first on understanding how to effectively use the Paint tool.

Figure 7.6 – Foliage brush

Chapter 7 205

When selecting any type of vegetation, a menu unfolds displaying a series of details that influence

how vegetation is painted in the scene.

Figure 7.7 – Foliage details menu: Mesh (1), Painting (2), Placement (3),
and Instance Settings (4)

This menu includes numerous features, but we will focus on the key ones:

•	 Mesh: Here, we have our Static Mesh and the class used for generating instances.

•	 Painting: This feature allows us to modify how the mesh is painted in the scene. We

can adjust the density of instances per 10 square meters (Density), the spacing between

instances to avoid overlap (Radius), and even the scale to introduce variability in size

(Scaling).

•	 Placement: In this section, we adjust how instances should be positioned in the scene.

We can set a height offset for placement (Z Offset), determine whether instances should

align perpendicular to the surface (Align to Normal), introduce random rotation around

the Z axis (Random Yaw), adjust the slope angle for placement (Ground Slope Angle),

and specify the height (Height).

Populating Your World with Foliage206

•	 Instance Settings: This section adjusts various options, such as the ability to generate

shadows and collisions and control how instances receive lighting from different types

of lights using Lighting Channels.

Figure 7.8 – Foliage details menu: Lighting channels

Chapter 7 207

•	 Cull Distance: An important property related to optimization is Cull Distance, which

by default is set to 0 for both Min and Max values, meaning it is disabled. This distance

varies between the Min and Max values to ensure that assets fade out gradually rather

than disappearing abruptly.

Figure 7.9 – Foliage details menu: Cull Distance

Populating Your World with Foliage208

•	 Scalability: Activating this option allows for real-time control over vegetation density.

Figure 7.10 – Foliage details menu: Scalability

You can enable it using the foliage.DensityScale command with values ranging from 0.1 to 1.0.

Figure 7.11 – Runtime scalability (values from left to right: 0.1, 0.5, 1.0)

Once our vegetation is configured, it’s time to start painting!

Using the Foliage tools
From this point on, the Foliage Tool Palette, which we saw at the beginning of the chapter, be-

comes crucial once again.

Figure 7.12 – Foliage tools

Let’s take a look at these tools one by one.

Paint
As we use the various tools, options will open up primarily in the form of brushes to adjust how

we paint vegetation. Naturally, to begin painting, we should select the Paint option.

Chapter 7 209

With this tool, we can modify the brush size (Brush Size) and density of painting (Paint Density),

as well as erase the density (Erase Density). These densities act as multipliers for the vegetation

densities. Before making the first stroke, it’s crucial to pay attention to filters, as you can paint

on the landscape objects such as Binary Space Partition (BSP), Static Meshes, translucent objects,

or more vegetation.

Figure 7.13 – Foliage tools: Paint

Working in this manner, all the information, including the position of the vegetation in the scene

and the palette we used for painting, will be saved within this Foliage Actor.

 Important note

As a very important recommendation, if you are working with levels, you must en-

sure that you are working at the correct level. Make sure the Place in Current Level

option (see Figure 7.13) is active to ensure that vegetation is placed in the correct level.

Populating Your World with Foliage210

Figure 7.14 – Outliner showing Foliage Actor and instances

As mentioned earlier, Foliage Mode is useful for detailed decoration of specific areas because its

tools allow for more precise placement compared to other methods within Unreal Engine.

Now we are ready to start painting! To do this, we’ll use the left mouse button to drag over the scene

and paint vegetation on the Actors selected in the filters section mentioned earlier. To erase our

strokes or parts of them, we can use Shift + left mouse button.

At this point, two scenarios occur depending on the level management system chosen: tradi-

tional levels or World Partition. In traditional workflows, when we drag Static Mesh Foliage

into the palette, the InstanceFoliageActor class is created in the Outliner, which gathers all

the information about the instances of our vegetation. Conversely, if we are working with the

automatic data management and level streaming system based on distance (World Partition),

InstanceFoliageActor is created when we perform the first stroke (as we drag).

Figure 7.15 demonstrates how painting and erasing vegetation appear in the Viewport, helping

visualize the process described above:

Chapter 7 211

Figure 7.15 – Paint and erase

Erase
Similarly to the Paint tool, the same options will appear when using the Erase tool (see Figure

7.16). In this case, however, our objective will be to remove vegetation. We can accomplish this

by holding down the Shift key and using the left mouse button, just as when painting.

Figure 7.16 – Foliage tools: Erase

Populating Your World with Foliage212

Lasso
This tool allows for the selection of instances using a brush, similar to working with Paint or Erase.

Figure 7.17 – Foliage tools: Lasso

In this case, you can only adjust the brush size and use filters to specify where the selection will

apply. To deselect instances while dragging the brush, use Shift + left mouse button.

Figure 7.18 – Foliage tools: Lasso (result)

Chapter 7 213

Deselect
With this tool, we deselect all the instances that were previously selected using the Lasso tool.

Figure 7.19 – Foliage tools: Deselect

Remove
With this tool, we remove all the instances that were previously selected using the Lasso tool.

Figure 7.20 – Foliage tools: Remove

Select
After painting vegetation with the Paint tool, we can individually select instances to subsequently

delete them or even perform transformations such as move, rotate, and scale.

Populating Your World with Foliage214

Figure 7.21 – Foliage tools: Select

All
With this tool, you can select all instances with a single click. Once selected, you can delete them

using Remove or move them to the current level using Move.

Figure 7.22 – Foliage tools: Remove and Move

Chapter 7 215

Single
This tool allows you to place vegetation with each mouse click. Each time you click, it randomly

paints one type of vegetation from those selected in the palette.

Figure 7.23 – Foliage tools: Single

Populating Your World with Foliage216

Fill
This tool allows us to fill any type of Actor in the scene with vegetation that we have selected in

the filters.

Figure 7.24 – Foliage tools: Fill

As you can see, there is no option to select Landscape because it covers a large area and could

significantly impact project performance. If we use a plane, sphere, or box as an example, each

left-click will populate them with vegetation based on the configuration we have set for those

instances.

Figure 7.25 – Foliage tools: Fill meshes

Chapter 7 217

Reapply
Once the vegetation is painted, you can change certain parameters of the instances.

Figure 7.26 – Foliage tools: Reapply

The procedure is as follows:

1.	 Selecting vegetation types: Use the Reapply tool to select the types of vegetation from

your palette to which you want to apply changes.

2.	 Adjusting details: In the vegetation Details section, make the desired changes.

3.	 Applying changes: Paint the changes onto the instances in the level.

Figure 7.27 – Applying changes with Reapply tool

Populating Your World with Foliage218

As discussed, in Foliage Mode, under the Scalability section in the console, you can input the

foliage DensityScale command (from 0.1 to 1.0) to observe density changes.

Figure 7.28 – Foliage tools: Reapply/density scale

Now that we understand how to configure our vegetation, we can continue detailing our scene

by populating it with grass, trees, and shrubs. The Foliage tool is not limited to working only

with vegetation; it allows painting of any type of Static Mesh, including paper, cans, bricks, and

chairs, as shown in Figure 7.29:

 Important note

It could be a good exercise to select and change the scalability by activating Density

Scaling:

1.	 Select the Reapply tool: Choose the Reapply tool and select the vegetation

you want to modify.

2.	 Adjust scalability in Details: In the Details panel, under Scalability, activate

Density Scaling.

3.	 Apply changes: Paint the changes onto the instances in the scenes.

4.	 Exit Foliage Mode: Exit Foliage Mode once changes are applied.

Chapter 7 219

Figure 7.29 – Props via Foliage

If we need to download any other assets, we have the option to use high-quality scanned assets

accessible through Quixel Bridge, as seen in Chapter 2.

Figure 7.30 – Megascans quick access

Populating Your World with Foliage220

When working with vegetation, it’s easy to get carried away by both quantity and quality. Creat-

ing a forest, jungle, or hillside completely covered with grass or crops requires a large number of

instances to make the scene believable. However, this also entails a significant number of calcu-

lations and resources that the engine needs to render correctly in real time. Therefore, optimizing

your project becomes crucial not only for maintaining smooth performance but also for ensuring

that your scenes are both visually impressive and efficiently rendered.

Static Mesh Foliage optimization
The process of optimizing a project, especially those related to open worlds and involving the use

of a large number of assets related to foliage that must be instantiated many times, is a crucial

task that we must keep in mind at all times. Given that the raw material of our foliage is Static

Meshes, here are some considerations to keep in mind.

Firstly, the polygon count in vegetation meshes is crucial. The fewer polygons our grass has, the

more instances we can have in the scene simultaneously.

Using a well-balanced LOD system, as discussed in Chapter 3, ensures that higher LODs (such as

LOD0) with more detail are displayed near the camera. At greater distances, lower LODs such as

LOD4 or LOD5 are used, which have fewer polygons and lower scene rendering costs.

Figure 7.31 – Foliage LODs

Chapter 7 221

Each LOD has a set of properties that can be adjusted individually. Lower LODs (such as LOD3,

LOD4, and beyond) are farther from the camera, so their shadows won’t be noticeable. Therefore,

we will disable shadow generation for these LODs.

Figure 7.32 shows the settings for LOD 3. Here, you can view and adjust key options such as shad-

ow casting, collision, and distance field lighting to optimize performance for lower-detail levels:

Figure 7.32 – Settings panel for LOD 3, showing optimization options

It’s common for vegetation to have movement to simulate wind effects, typically achieved using

materials and vertex shaders to modify vertex positions, specifically when working with World

Position Offset. For vegetation that is far from the camera and where movement is barely per-

ceptible, it need not be animated. In such cases, we can disable this movement using the World

Position Offset Disabled Distance property in Static Mesh Foliage. Setting a distance from the

camera (e.g., 2,500 cm) will prevent World Position Offset from affecting the vegetation beyond

that point. This helps reduce computations, avoid unwanted artifacts, and maintain optimal

performance.

Figure 7.33 – World Position Offset Disable Distance

A more optimal option is to use Nanite for vegetation. To activate this geometry virtualization

system, go to the Mesh Editor, locate the Nanite Settings section, and check Enable Nanite

Support. Apply the changes and save. If you notice that the vegetation appears flat in the scene,

additionally select Preserve Area to ensure that when reducing polygon count, it maintains vol-

ume (or screen area) effectively.

Populating Your World with Foliage222

Figure 7.34 – Enable Nanite

Lighting
Unreal’s rendering engine, Lightmass, generates shadow and light maps individually as needed

for each instance. There are several settings in the Static Mesh that must be checked to ensure

that precomputed lighting works well with vegetation. Incorrect settings could result in black

meshes after building lighting:

•	 Check that Unreal uses the correct UV channel to generate lightmaps and ensure that the

UVs are correctly unwrapped. If they are not, Unreal can generate them quickly, provided

the mesh has at least one correct UV channel.

•	 Lightmap resolution should be small enough to allow all shadow maps from instances

within a single group/cluster (default is 100) to be grouped without exceeding the max-

imum texture resolution (4096 x 4096).

Textures
Another important point when optimizing vegetation is the use of textures, which are often

oversized, especially with Megascans vegetation, due to its high quality.

Ideally, creating vegetation from scratch would be most optimal, but when working with

Megascans assets, the minimum texture resolution available from Quixel Bridge is 1024 x 1024 px.

However, this doesn’t mean you must always work with this resolution. It depends on the type

of vegetation and the size of the Static Mesh.

Chapter 7 223

For example, for Wild Grass, which has very small stems, textures of 256 x 256 px might be

sufficient. On the other hand, for a forest of trees with large trunks, you might need textures of

2048 x 2048 px.

Different types of vegetation require different texture resolutions, so it’s essential to configure

textures specifically for each case. In the texture editor, under the Compression section, adjust

Maximum Texture Size from its default value of 0 (which means no limit) to a power-of-2 value

that maintains detail in the scene while reducing memory load significantly:

Figure 7.35 – Maximum Texture Size

For a Static Mesh that has a set of textures, you can edit them individually, but considering that

the project will likely have many textures, it’s more efficient to edit them together. Here’s how

you can do this:

1.	 Select all the textures you want to modify simultaneously.

2.	 Right-click to bring up the contextual menu.

3.	 Navigate to Asset Actions and select Edit Selection in Property Matrix (or Bulk Edit in

Property Matrix for versions of Unreal prior to 5.3).

This action allows you to make bulk edits to properties across multiple selected textures

efficiently.

Populating Your World with Foliage224

Figure 7.36 – Edit Selection in Property Matrix

4.	 Now, a window will open displaying all the properties of the textures that can be seen in

the texture editor itself. In the tab that appears on the right, Pinned Columns, you will

find the Compression section, where you will again find Maximum Texture Size to set

the desired resolution.

Figure 7.37 – Maximum Texture Size on Edit Selection in Property Matrix

In this section, we have discussed various strategies for auditing the Static Meshes that make

up our foliage. These considerations are focused on improving the real-time performance of our

projects. Depending on the project’s size and the hardware specifications of our PC, we can use

them to maintain performance both in the editor and during execution.

Chapter 7 225

Summary
In this chapter, we delved into the use of Unreal Engine’s Foliage Mode to efficiently populate

our environments with vegetation. We learned how to select, configure, and paint various types

of foliage using tools such as Paint, Erase, Fill, and Select. Additionally, we discussed the impor-

tance of optimizing instance density, configuring appropriate LODs, managing foliage movement

and lighting, and adjusting textures to enhance performance without sacrificing visual quality.

By gaining proficiency in Foliage Mode and applying optimization techniques, we can create more

immersive and dynamic worlds in Unreal Engine. It’s crucial to strike a balance between visual

fidelity and project performance, ensuring that our environments not only look great but also

perform well across different hardware configurations. Understanding these tools and techniques

empowers developers to craft environments that are both stunning and efficient, enhancing the

overall gameplay experience for users.

In the next chapter, we will be working with materials. We will start by understanding basic

concepts related to materials, as well as the interface related to material creation. We will study

the principles of PBR Materials within Unreal Engine. Finally, we will discuss creating materials

from textures and materials for landscapes.

Subscribe to Game Dev Assembly Newsletter!
We are excited to introduce Game Dev Assembly, our brand-new newsletter dedicated to every-

thing game development. Whether you’re a programmer, designer, artist, animator, or studio lead,

you’ll get exclusive insights, industry trends, and expert tips to help you build better games and

grow your skills. Sign up today and become part of a growing community of creators, innovators,

and game changers.

https://packt.link/gamedev-newsletter

Scan the QR code to join instantly!

https://packt.link/gamedev-newsletter

Populating Your World with Foliage226

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

8
Introduction to Materials

In Unreal Engine, materials play a critical role in defining the visual characteristics of objects

within a scene. Essentially, a material can be viewed as the layer that determines how an object’s

surface looks and behaves under various lighting conditions. Materials specify how surfaces inter-

act with light, dictating attributes such as color, shine, texture, and opacity. By manipulating these

properties, materials help create realistic and visually compelling environments in Unreal Engine.

In this chapter, we will explore how to work with materials, the most common nodes, and the

constructions we should follow to achieve the desired look for each type of surface we create.

Topics to be covered include the following:

•	 Understanding the terminology

•	 Exploring the Material Editor interface

•	 Working in the Material Editor

•	 Overview of PBR materials

•	 Exercise 8.1: Creating a gold material

•	 Delving into texture implementation

•	 Material workflows

Introduction to Materials228

Technical requirements
The technical requirements for this chapter follow the same specifications as Chapter 1 and the

rest of the chapters that follow; please refer to the Technical requirements section in that chapter.

That said, let’s remember the recommended hardware for working with Unreal Engine 5 (rec-

ommended version 5.5 or later) with Lumen Global Illumination and Reflections and Nanite

virtualized geometry:

•	 Operating system: Windows 10 64-bit version 1909 revision .1350 or higher, or versions

2004 and 20H2 revision .789 or higher. Support for DirectX 12 Agility SDK.

•	 Processor: Quad-core Intel or AMD, 2.5 GHz or faster.

•	 Memory: 8 GB RAM.

•	 Software Ray Tracing: This feature may require a video card using DirectX 11 with support

for Shader Model 5.

•	 Hardware Ray Tracing: Requires Windows 10 build 1909.1350 or newer with DirectX 12

support and specific compatible graphics cards (e.g., NVIDIA RTX-2000 series or newer,

AMD RX-6000 series or newer, Intel® Arc™ A-Series graphics cards or newer)

•	 Internet access: An internet connection is required to download the plugins and additional

content required for this chapter.

Understanding the terminology
Here’s a list of the terminology used in the chapter:

•	 Shaders and rendering process: Shaders dictate how vertices and pixels are rendered, writ-

ten in High-Level Shading Language (HLSL) for Unreal Engine. In a rendering pipeline,

shaders are specialized programs responsible for determining how each vertex or pixel is

rendered on screen. This shader code is subsequently translated into a series of assembly

language instructions that the GPU hardware can execute, ultimately producing the final

pixel colors displayed on your screen.

Chapter 8 229

•	 HLSL: HLSL empowers materials to communicate GPU instructions, enabling artists and

programmers to control on-screen visuals.

•	 Expressions and functions: Expressions are individual nodes that perform mathematical

operations or provide information to the material. They are combined in the Material

Editor and pass the result to the main node. Groups of nodes performing a specific task

are called functions.

•	 Main node: The main node of a material is where all nodes converge to determine its

appearance. Inputs to this node dictate how the material looks.

•	 PBR: Physically-Based Rendering (PBR) is a shading and rendering technique that more

accurately simulates how light interacts with different materials.

Now that we understand the fundamental concepts of materials in Unreal Engine, let’s delve into

the Material Editor interface.

Exploring the Material Editor interface
The Material Editor in Unreal Engine has its own workspace and related tools. This graphical

interface operates using nodes called Material Expressions, which are then translated into HLSL

code. This approach makes the creation of materials within Unreal Engine a more intuitive process.

To create your first material, open the Material Editor. In Unreal Engine, creating different types

of assets, such as materials, blueprints, textures, and others, involves first creating them as assets

in a designated folder. To start, right-click in an empty area of the Content Browser and choose

Material under Create Basic Asset.

Introduction to Materials230

Figure 8.1 – Content Browser

This action will create the asset ready to be renamed. However, not all names are acceptable. In

Unreal, maintaining organization is crucial, both at the folder level and in terms of prefixes and

suffixes for different assets. It is recommended to follow style guides (mentioned in Chapter 4).

For materials, use the prefix M_ followed by the desired name. In this case, since we are reviewing

the user interface, the name will be M_UI.

Chapter 8 231

Figure 8.2 – Material asset

Double-clicking the material will open the Material Editor. The interface is divided into several

areas, and we will primarily focus on the zones marked in the following figure:

Figure 8.3 – Overview of the Material Editor user interface

Introduction to Materials232

Figure 8.3 depicts the following zones of the Material Editor user interface:

1.	 Graph

2.	 Palette

3.	 Viewport

4.	 Details

5.	 Toolbar

6.	 Stats

Let’s take a look at each of these zones in detail next.

Graph
When you create a material, a main node with multiple inputs appears. This main node serves

as the central hub where you connect expressions and functions to create materials. Here are the

controls for performing various operations:

•	 Left mouse button: Select individual nodes; if you click and drag, you can select multiple

nodes simultaneously.

•	 Right mouse button + drag: Move or pan across the Graph.

•	 Mouse wheel (or right mouse button + Alt key): Zoom in and out.

•	 Right mouse button in the Graph (or Tab key): Access the palette, which will be covered later.

•	 Left mouse button (click and drag between pins): Make connections between nodes.

Connections are always made from the outputs to the inputs, moving from left to right.

Figure 8.4 – Material Editor user interface: OUTPUTS/INPUTS

•	 Left mouse button + Alt key: Disconnect nodes, both at the inputs/outputs and at the con-

nections themselves.

•	 Left mouse button + Ctrl key: Change connections between inputs or outputs.

Figure 8.5 gives an overview of all these shortcuts:

Chapter 8 233

Figure 8.5 – Material Editor user interface: shortcuts

Palette
In this window, you’ll find all expressions and functions for composing your material. You can

access it by pressing Tab or by right-clicking in an empty Graph space. Nodes are categorized

based on their functionality, such as Math, Textures, Utility, and Material Functions, which

help organize and streamline the process of building complex materials:

Figure 8.6 – Material Editor user interface: node palette

Introduction to Materials234

Viewport
Initially, the Viewport in the Material Editor shares nearly the same menus as the Scene Viewport,

except for the icons located in the bottom-right corner:

Figure 8.7 – Material Editor user interface: Viewport

These icons display basic primitives to better visualize the material being created. From left to

right, they include Cylinder, Sphere, Plane, and Cube. The last icon, positioned all the way to the

right, is used to visualize any Static Mesh selected in the Content Browser.

Chapter 8 235

Figure 8.8 – Material Editor user interface: Preview custom Static Mesh

In the Material Editor, the material you’re editing appears on Element 0 of the Static Mesh. You

can view this by opening the Static Mesh in the mesh editor and checking the Material Slots

section. It shows how many materials are assigned to different parts of the Static Mesh. For in-

stance, for SM_MatPreviewMesh_01, the material covers the entire surface, including the base.

Figure 8.9 – Static Mesh editor: Material Slots

Introduction to Materials236

Details panel
In this area, all the properties of the expressions or functions selected in the Graph will appear,

allowing you to make necessary changes.

Figure 8.10 – Material Editor user interface: Details

Toolbar
This toolbar contains a series of icons, focusing on the most common tools used when working

with materials. You need to double-click on any material to open this toolbar.

Figure 8.11 – Material Editor user interface: toolbar

Here’s a list of these tools, from left to right:

1.	 Save: Saves every change made in the Material Editor, including the asset itself.

2.	 Browse to Asset: Directly opens the Content Browser to the location where the material

is saved. This icon is found throughout Unreal Engine and is the quickest way to navigate

between different locations.

3.	 Apply: If the material is assigned to an object in the scene, this applies all changes made

in the Material Editor.

Chapter 8 237

4.	 Search: Opens a Search tab in the Material Editor where typing the name of an expression,

function, or comment displays a list.

Figure 8.12 – Material Editor user interface: toolbar | Search

5.	 Home: Zooms to the main node.

6.	 Hierarchy: Lists instances created from the material. This will be explored further in the

Material Instances subsection.

Introduction to Materials238

7.	 Live Update: Allows selection of preview types in nodes and Viewports. Useful for ani-

mating textures or masks within materials.

Figure 8.13 – Material Editor user interface: node preview

8.	 Clean Graph: Removes all nodes not directly or indirectly connected to the main node.

Includes the Hide Unselected Connectors option, collapsing inputs and outputs in all

nodes that are not connected.

9.	 Preview State: Modes for visualization and selection when working across different plat-

forms and shader qualities based on hardware specifications.

10.	 Hide Unrelated: Quickly visualizes connections between selected nodes, useful in mate-

rials with extensive node networks.

11.	 Stats: Opens the Stats tab, covered in its respective subsection.

12.	 Platform Stats: Opens a tab displaying material statistics and compilation errors for

different platforms used.

Stats
The Stats panel in Unreal Engine is crucial for material optimization. It includes Instruction

Count, estimating rendering costs; fewer instructions mean lower costs. Compiler errors during

node network compilation are flagged here.

Chapter 8 239

As you can see, the Material interface in Unreal Engine is quite comprehensive. The tools we’ve

explored so far allow us to view the construction (structure) of our material, add and remove

nodes, and even access the Stats information, which can be used as a performance indicator in

the future. With this in mind, let’s configure our first material.

Working in the Material Editor
Understanding data representation and manipulation in the Material Editor is crucial for cre-

ating materials in Unreal Engine. Each input in the main node defines the physical attributes of

the material and is designed to accept specific types of data, such as other material expressions

or functions. Let’s learn about some common data types frequently used in material creation.

Float
Float stores a single floating-point value that can be positive or negative and includes a decimal

point. It is usually used as a power or intensity value that can be combined with other nodes.

There are two material expressions commonly used to define a float:

•	 Constant (shortcut key 1): This value remains constant after material compilation.

•	 Scalar Parameter (shortcut key S): Unlike a constant, a scalar parameter acts as a named

variable that can be modified in a Material Instance after compilation or even during

runtime.

Float2
Float2 stores two numerical values, for example, (2.0, 3.0). In the Material Editor, the

Constant2Vector material expression (shortcut key 2) is used to define a float2. This is particularly

useful when working with UV coordinates of textures or positions on the screen.

Float3
Float3 in Unreal Engine stores three numerical values, often used to represent the red, green, and

blue color channels of a pixel’s color. A common application of float3 is defining solid colors. The

Constant3Vector expression (shortcut key 3) is used to define a float3 in Unreal Engine. It includes

a color bar in its details, and you can double-click it to open a color selector.

Introduction to Materials240

Figure 8.14 – Material Editor data type: Float3

Float4
Float4 stores four floating-point values, for example, (50.0, 0.0, 100.0, 0.5). There are two

commonly used material expressions to define a float4:

•	 Constant4Vector: Stores four constant values. Most commonly, Constant4Vector (key-

board shortcut 4) is used to represent RGBA colors, including an alpha channel.

•	 Vector Parameter: Represents a parametrized float4. You can create a vector parameter

directly from the palette.

Figure 8.15 – Material Editor data type: Vector Parameter

Chapter 8 241

Each channel is accessible through the five output pins as follows:

1.	 RGB: Returns the first three values of the float4 – in the example, (1.0, 0.5, 0.3)

2.	 R: Returns the value of the R channel only, (1.0)

3.	 G: Returns the value of the G channel only, (0.5)

4.	 B: Returns the value of the B channel only, (0.3)

5.	 A (5): Returns the value of the A channel only, (0.0)

To work with all four RGBA values together, you would use the AppendVector expression to

concatenate the last A channel.

Figure 8.16 – Material Editor data type: RGBA

So far, we’ve worked with float expressions within the engine, observing how a float can behave

both as a grayscale scale and as a single value indicating intensity or strength. By adding more

values to Scalar Parameter, we are assigning channels that enable the construction of more

complex values within the color palette, eventually including a fourth channel that allows us to

control opacity. In the next section, we will explore the main properties that define PBR materials.

Overview of PBR materials
A PBR material in Unreal Engine closely follows physical laws to accurately depict how light

interacts with surfaces. Unreal Engine currently employs the PBR Metallic - Roughness system,

which encompasses three core properties: Metallic, Specular, and Roughness. In addition to

these, specific inputs such as Base Color, Normal, and Ambient Occlusion play crucial roles in

defining a PBR material’s appearance and surface properties.

Let’s explore the essential inputs required to create a PBR material.

Introduction to Materials242

Base Color
Base Color defines the material’s primary color, representing diffuse light without shadows or

specular reflections. It can be connected to a uniform color for consistent object coloring or tex-

tured to simulate materials such as wood or rock. This input also provides shader information on

both the material’s color/appearance and reflectivity, particularly relevant for metallic elements,

which will be elaborated on further.

Figure 8.17 – PBR material: Base Color

Metallic property
The Metallic property in PBR determines whether the material is metallic (conductor) or non-

metallic (dielectric). This parameter ranges from 0 to 1, where 0 (black in a texture) indicates

non-metallic, while 1 (white in a texture) indicates metallic.

Figure 8.18 – PBR material: Metallic

Chapter 8 243

Initially, materials should be categorized as either pure metals (1) or non-metals (0), avoiding

intermediate values. Both metals and non-metals often coexist within the same material.

Specular
This input communicates to the shader the amount of light that a surface should reflect, with

values ranging from 0 to 1.

For non-metallic (dielectric) surfaces, light reflection typically ranges from 2–5% up to a maximum

of 8–10%. In Unreal Engine, a Specular value of approximately 0.05 represents the real-world

reflection of about 4–5% of incident light. Pure metallic materials reflect between 70% and 100%

of incident light. When the Metallic value is set to 1, the shader handles reflection internally. The

exact reflectivity of a pure metallic material varies based on its Base Color input, as discussed in

the preceding section.

Roughness
Roughness defines the surface texture of a material, affecting whether reflections appear diffuse

or specular. Rough surfaces scatter light in many directions, creating diffuse reflections and a

matte appearance. Roughness values range from 0 to 1:

•	 A value of 0 (black when using textures) simulates a polished surface, resulting in sharp

specular reflections

Figure 8.19 – PBR material: Roughness with Metallic = 1

•	 A value of 1 (white when using textures) simulates a rough or matte surface, leading to

diffuse reflections

Figure 8.20 – PBR material: Roughness with Metallic = 0

Introduction to Materials244

Normal
The Normal input adds surface detail to a material, influencing how light interacts to create

shadows and highlights. In Unreal Engine, it uses a bluish texture where each channel (R, G, and

B) affects different aspects: R for horizontal detail, G for vertical detail, and B for depth.

Figure 8.21 illustrates this enhancement: the left object lacks a Normal map, while the right one,

with a Normal map applied, shows increased detail without needing a high-polygon mesh:

Figure 8.21 – PBR material: Without a Normal map (left) and with a Normal map (right)

Ambient Occlusion
Ambient Occlusion simulates self-shadowing within surface crevices using a texture map rang-

ing from black to dark gray (values near 0) to near-white (values approaching 1). These shadows

indicate areas where light bounces less, creating darker regions. This effect is effective with static

or stationary lighting, but is inactive with lights set to the Movable mobility state.

Chapter 8 245

Figure 8.22 – PBR material: Ambient Occlusion

Understanding these nodes in PBR materials allows us to wield all possible control when creating

materials. With this information in hand, let’s move on to creating practical materials for our

project.

Exercise 8.1: Creating a gold material
Using what we’ve learned so far, let’s create a basic PBR material, specifically for gold:

1.	 First, ensure it’s a pure metallic material by setting the Metallic input to a Constant node

with a value of 1 (directly in the node’s Details panel).

2.	 Next, apply the color using a Constant3Vector node, setting Details to R = 0.944,

G = 0.766, and B = 0.366.

3.	 Finally, for the Roughness input, connect another Constant node with a value of either

0 or 0.05 to add some imperfection to the reflections.

Introduction to Materials246

Et voilà! You now have your first perfect gold material ready to use:

Figure 8.23 – PBR material exercise

Delving into texture implementation
We have seen in the previous exercise how it is possible to create a gold material using three

simple nodes composed of floats (values). But this is not possible when we talk about 100% PBR

materials, so we must understand the correct use of textures in Unreal Engine.

Chapter 8 247

Formats and resolutions
We’ve used values for color (float3), roughness (scalar), and metallic level (float). These inputs

also accept texture maps, which must meet specific criteria for file format and resolution. Unreal

Engine supports various image formats, including JPG, FLOAT, JPEG, PCX, PNG, PSD, EXR, TIF,

BMP, TIFF, TGA, and DDS.

Texture dimensions are crucial, as not all resolutions perform equally in the engine. Ideally, tex-

tures should have dimensions based on powers of two. In the following table, we can see the

progression of texture resolutions in powers of two, a very useful property that Unreal Engine

can leverage.

1 x 1 2 x 2 4 x 4 8 x 8 16 x 16 32 x 32 64 x 64

128 x 128 256 x 256 512 x 512 1,024 x 1,024 2,048 x 2,048 4,096 x 4,096 8,192 x 8,192

Table 8.1 – Texture resolution (in pixels)

Unreal Engine can handle dimensions that aren’t powers of two, but using powers of two enables

mipmaps. Mipmaps are smaller versions of the original texture at reduced resolutions.

But what is a mipmap? It’s a version of the original texture at one-fourth its resolution, as you

can see in Figure 8.24:

Figure 8.24 – Mipmaps of a texture

Introduction to Materials248

The engine creates smaller versions of textures, called mipmaps, to enhance rendering quality

and reduce artifacts. These mipmaps are used to smoothly transition details between close-up

and distant elements.

Figure 8.25 – Visualization of mipmaps on a Static Mesh

Working with textures in the Material Editor
In Unreal Engine’s Material Editor, handling textures is essential once they’re imported into the

Content Browser. The Texture Sample node (shortcut key T) is key to this process, enabling

image channel manipulation (R, G, B, and A) such as handling a float4 vector.

Figure 8.26 – Texture Sample expression

 Important note

Textures don’t necessarily have to be square; they can be rectangular as well, but they

should always follow a power-of-two dimension: 4,096 x 1,024, 512 x 64, and so on.

Chapter 8 249

Let’s connect this Texture Sample node to the Base Color parameter of our material to get the

following result:

Figure 8.27 – Texture connected to the Base Color input

Working with textures brings an additional challenge as their visualization depends heavily on

the object and how its UVs are laid out (see Chapter 3 for details). To gain control over our textures,

we utilize the Texture Coordinate node (shortcut key U), indicated by its red color.

Figure 8.28 – Texture Coordinate

Adjusting the UTiling and VTiling parameters allows us to repeat the texture multiple times

along the corresponding axis; for example, setting both to 2 results in the texture repeating four

times (twice in both U and V directions). Hence, the default value for the Texture Sample node

in its UVs input is 1.

Introduction to Materials250

Figure 8.29 – Texture tiling

For greater utility, it’s beneficial to manage these UV tiling values outside of this node, allowing us

to incorporate them into a parameter. This approach lets us observe and adjust the UV tiling within

Material Instances, which will be discussed in the Material Instances subsection of this chapter.

Figure 8.30 – Texture tiling construction

In this section, we’ve explored the use of textures for visualization in PBR materials, as well as the

Texture Coordinate node to adjust the scale or tiling of textures on a surface. It’s also important

to note that the same Texture Coordinate node can be used for multiple textures within the

same material. With this in mind, let’s dive deeper into material workflows to understand how

to manage and reuse materials throughout our projects without compromising performance.

 Tip

If you’d like to explore more complex or ready-made materials, you can find a vari-

ety of examples in Fab and through Quixel Bridge, both directly accessible from the

Epic Games Launcher. You can also open sample projects from the Learn tab in the

Launcher to study advanced material setups and workflows used in professional

environments.

Chapter 8 251

Material workflows
Unreal Engine’s Material Editor is one of six tools for material work, including instances, functions,

layers, parameter collection, and HLSL. These tools are popular for their efficiency in quickly

creating materials and updating properties as needed during development.

In the following sections, we will explore each of these tools in detail, discussing their features

and how they can enhance the material creation process.

Material Instances
Material Instances offer a way to alter a material’s appearance without costly recompilation. As

materials grow more intricate, adjusting directly in the Material Editor can become time-con-

suming. Material Instances solve this by enabling modifications without recompiling, improving

workflow efficiency, and potentially enhancing material performance.

Instances can be created from the material itself via right-clicking and selecting Create Material

Instance:

Figure 8.31 – Create Material Instance

Introduction to Materials252

Alternatively, you can create an instance from the Content Browser by right-clicking on the

Material category and choosing Material Instance, as shown in Figure 8.32:

Figure 8.32 – Material Instance

Best practice involves creating a master material for each surface type and generating instances

from it. This ensures that changes to the master material affect numerous scene objects instant-

ly. Balancing the number of master materials and instances is critical; larger projects might use

20–50 master materials relied upon by many instances.

Texturing landscapes
When creating a scene, it’s common to use an environment that needs proper texturing. Unreal

Engine provides specific Landscape tools for importing heightmaps and sculpting terrain. Re-

garding texturing, any type of material can be applied to our landscape; however, to texture using

layers and brushes, the material needs to be configured accordingly.

Let’s begin by learning about the most common nodes to start painting layers on our landscape.

Chapter 8 253

Common landscape material expressions
In the context of material setup for landscapes, we utilize nodes such as Texture Coordinate to

manage texture display.

Specifically for landscapes, the following are the most common expressions.

Figure 8.33 – Landscape material: common expressions

Among these, the LandscapeLayerCoords node offers tailored UV information. Additionally,

nodes such as Landscape Layer Weight and Landscape Layer Blend facilitate the painting of

layers on terrain surfaces.

In Figure 8.34, we can see the options available from the Landscape Layer Blend node in detail:

Figure 8.34 – Landscape Layer Blend

Introduction to Materials254

Here’s what each option in the Landscape Layer Blend node means:

1.	 Layers: From the + icon, you can add layers that automatically appear in the node.

2.	 Index [1]: This is the collapsed layer view.

3.	 Layer Name: This is the unique name assigned to the layer. This name will appear in the

Paint section of Landscape Mode. It is recommended not to use spaces in these names.

4.	 Blend Type: These are the different types of blends for painting between different layers.

These can be LB_AlphaBlend, LB_HeightBlend, or LB_WeightBlend. If LB_HeightBlend

is used, a new input, Height ‘layer name’, appears where a texture can be connected;

typically, a heightmap acts as a mask for a more precise transition between layers.

5.	 Preview Weight: This value indicates the weight of the layer to preview the blend exclu-

sively in the Material Editor.

6.	 Const Layer Input: Here, you can enter a numerical value that is used as a color if you do

not want to use a texture. It is mainly used to debug a layer if any issues arise.

7.	 Const Height Input: This can be used to provide a number as height if you do not want

to use a texture.

The other two expressions, Landscape Layer Sample and Landscape Grass Output, usually go

hand in hand, as shown in Figure 8.35:

Figure 8.35 – Landscape Layer Sample and Landscape Grass Output

Chapter 8 255

As shown in Figure 8.35, the Landscape Layer Sample expression takes values from layers with

exact names. If you name it Grass, it will take the value from that layer. This expression is very

useful for displaying vegetation through materials.

The Landscape Grass Output expression is an output, like the main node, responsible for proce-

durally generating 3D vegetation in those layers specified using the Landscape Layer Sample node.

Generating vegetation from landscape material
What type of vegetation will be generated from the landscape material? Clearly, we need to specify

the type of vegetation and under what conditions it should be generated. This is where a new

asset comes into play: Landscape Grass Type.

Figure 8.36 – The Landscape Grass Type asset

To create this asset, right-click in the Content Browser and navigate to Foliage | Landscape Grass

Type. Once created, double-click (as with all assets in Unreal) to open the asset, and you’ll find a

series of properties very similar to Static Mesh Actor, which we saw in Chapter 7.

Introduction to Materials256

Figure 8.37 – Landscape Grass Type

Each Array Element (1) represents one vegetation type you add by clicking the + symbol. Within

each element, you’ll find the following options:

•	 Grass Mesh (2): Assign the Static Mesh for the vegetation.

•	 Grass Density (3): Number of instances generated per 10m² of terrain.

•	 End Cull Distance (4): Rendering distance of the vegetation from the camera. This ensures

that vegetation is only populated up to a specified distance from the camera, optimizing

performance by not populating the entire terrain unnecessarily.

•	 Min LOD (5): Minimum LOD used for generating vegetation.

Chapter 8 257

•	 Scaling (6): Scale variation applied to the vegetation to create visual randomness.

•	 Random Rotation (7): Adds random rotation around the Z axis to each instance of veg-

etation for more natural variation.

•	 Align to Surface (8): Determines whether vegetation aligns perpendicular to the terrain

surface. Suitable for ground cover but may not be ideal for vertical objects such as trees.

•	 Instance World Position Offset Disable Distance (9): Distance beyond which any sim-

ulated movement of vegetation (e.g., wind effects) is disabled to improve performance

and avoid visual artifacts.

Once this asset is configured, it’s time to apply it within the material. You should place it in the

properties of the Landscape Grass Output node, where you will find a series of elements. By

clicking the + button, you can add all the elements needed to create your vegetation.

Figure 8.38 – Landscape Grass Type in Landscape Grass Output

We can add a second element to display sediments or small rocks on the Rock layer.

Figure 8.39 – Landscape Grass output: GrassCover and Debris

Introduction to Materials258

After exploring common landscape material expressions, let’s create one using Megascans re-

sources from Chapter 2.

Implementing landscape material expression
Using Bridge, import textures for grass, rock, and snow surfaces. Then, add these surfaces to the

Material Editor by dragging their textures, each creating a Texture Sample node. Landscape ma-

terials often require many textures, but Unreal Engine limits each material to 16 texture samples.

Figure 8.40 – Texture Sample: Shared Wrap

Adjust the scaling of textures for each surface using the LandscapeCoords node and a scalar pa-

rameter such as Tile Grass. This parameter, connected via Multiply nodes, ensures that textures

adapt to the scene’s scale. Each texture component, including normal maps and packed textures

containing Ambient Occlusion, Roughness, and Displacement, should be connected accordingly.

Chapter 8 259

Figure 8.41 – Tiling set up

We’ll use the SetMaterialAttributes expression to streamline data management for our tex-

tures. Each texture, or texture sample, supplies float data: Base Color and Normal as float3, and

Specular, Roughness, and Ambient Occlusion as float. Connecting these textures to the node

consolidates them into Material Attributes, which define our surface properties comprehensively.

The expression’s Details panel includes a + button for adding channels or inputs in the desired

order as needed.

Figure 8.42 – The SetMaterialAttributes expression

Now, link Base Color and Roughness from the G channel of the packed texture, Ambient Oc-

clusion from the R channel, and the Normal map. For Specular, connect a value of 0.15 (see

Figure 8.43), which, while not strictly PBR, reduces shininess across the surface, creating a damp

appearance on large terrains.

Note that Tile Grass is not a standard node; it is a ScalarParameter, and 0.15 is a Constant node.

Introduction to Materials260

Figure 8.43 – SetMaterialAttributes connected

Each of these surfaces connects to Landscape Layer Blend. Additionally, the Grass and Snow

layers are set as LB_HeightBlend, requiring another input for a Height texture. We utilize the B

channel of the packed texture to make this connection, as depicted in Figure 8.44:

Figure 8.44 – Final SetMaterialAttributes

Chapter 8 261

The final material setup will look as follows:

Figure 8.45 – Overview of the final material setup

Introduction to Materials262

As you can see, the main node isn’t fully expanded, which is due to the Use Material Attributes

property being enabled in the Details panel of the main node.

Figure 8.46 – Landscape material: Use Material Attributes

Once the material is created, it’s best to create an instance to apply it to the landscape. In this case,

select the landscape in the scene, and in the Details panel, assign the instance.

Figure 8.47 – Landscape Details

Chapter 8 263

When assigning the material or instance, the landscape may appear black. This is normal because

the landscape still lacks some assets to display the material correctly.

Figure 8.48 – Landscape material assigned to the landscape

These assets need to be generated from Landscape Mode (Shift + 2). If you go to the Paint tab, you

will see paint layers listed under Layers, each named according to the Landscape Layer Blend

names we assigned.

Figure 8.49 – Paint layers

Currently, painting isn’t available. On the right side, beside the layers, you’ll find a + symbol. Click-

ing it reveals a menu for selecting how layers interact. Choose Weight-Blended Layer (normal),

the standard option allowing layers to blend like paint. A prompt will appear to save the necessary

layer information for Unreal to paint on the landscape. Select a path or use the default option.

Introduction to Materials264

Figure 8.50 – Path info layers and a Layer Info asset

When applying the first layer, it may not cover the entire terrain automatically. Continue adding

subsequent layers until the brush icon changes from red (indicating inability to paint) to gray

(indicating ability to paint). Then, utilize Unreal’s painting tools to add artistic detail to the terrain.

Figure 8.51 – Layer info created for Grass Layer

Chapter 8 265

Finally, we can achieve a Landscape material that looks like this, in its most basic form:

Figure 8.52 – Final basic landscape texturing

In this section, we have put into practice everything seen throughout the chapter. We have cre-

ated a Landscape material that consists of different types of surfaces, which allows us to use the

painting tools to detail different surfaces as we like.

Summary
In this chapter, we delved into the intricate world of material creation within Unreal Engine, fo-

cusing particularly on its application in open world environments. We started by exploring the

fundamental nodes and techniques used to texture landscapes, emphasizing the importance of

preparation and optimization. Understanding how to utilize texture samples, landscape coordi-

nates, and material attributes allows us to craft realistic and visually appealing terrains.

Moreover, we explored advanced concepts such as material functions and Material Instances,

which streamline workflow and facilitate collaborative efforts among team members. These

tools not only enhance efficiency but also ensure consistency across diverse materials and assets

within large-scale projects.

Introduction to Materials266

Furthermore, integrating assets from Megascans into our materials enabled us to elevate the

realism of our environments, demonstrating the seamless integration of high-quality textures

and assets directly within Unreal Engine’s ecosystem.

Finally, mastering the painting and layering techniques using Landscape layers provided us

with the ability to transform our terrains into dynamic, artistically rich landscapes. By leveraging

Unreal Engine’s robust painting tools, we were able to achieve nuanced and visually captivating

landscapes suitable for diverse open world settings.

In essence, understanding and effectively utilizing Unreal Engine’s material system empowers

developers and artists to create immersive and engaging open world environments, setting the

stage for limitless creative possibilities in game development.

In the next chapter, we’ll take a closer look at creating atmospheric lighting using Unreal Engine’s

environment lighting tools.

Subscribe to Game Dev Assembly Newsletter!
We are excited to introduce Game Dev Assembly, our brand-new newsletter dedicated to every-

thing game development. Whether you’re a programmer, designer, artist, animator, or studio lead,

you’ll get exclusive insights, industry trends, and expert tips to help you build better games and

grow your skills. Sign up today and become part of a growing community of creators, innovators,

and game changers.

https://packt.link/gamedev-newsletter

Scan the QR code to join instantly!

https://packt.link/gamedev-newsletter

Chapter 8 267

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

Part 3
Lighting and

Post-Processing
for Realism

In this part, you’ll move on to examine how light and post-processing shape the overall visual

tone of a scene. The part explains how to use Environment Light Mixer and related actors to

create physically accurate and atmospheric lighting setups for open world environments. You’ll

also explore the principles behind dynamic lighting with Lumen, Virtual Shadow Maps, and

Nanite for consistent performance and visual quality. The part concludes with post-processing

techniques that refine your final image through Color Grading, Exposure, and Bloom, ensuring

a cohesive and polished look across the entire scene.

This part of the book includes the following chapters:

•	 Chapter 9, Create Your World’s Atmospheric Lighting

•	 Chapter 10, Setting Up Your Post Process Volume

9
Create Your World’s
Atmospheric Lighting

Lighting is crucial in shaping the mood and atmosphere of any virtual environment. In open world

games, it adds emotional depth to scenes, guiding how players experience and interact with the

world. Effective lighting can evoke emotions, from the warmth of a sunrise to the tension of a

dark forest, making it a vital aspect of world-building.

In Unreal Engine, artists use tools to control light intensity, color, and shadows, enhancing both

the visuals and emotional impact. These tools, including atmospheric effects and integrated

lighting systems, help create dynamic, immersive experiences.

In this chapter, we’ll focus on open world lighting in Unreal Engine, exploring the Environment

Light Mixer and key Actors that enable physically accurate ambient lighting. We’ll also cover

performance-related technologies such as Nanite and Virtual Shadow Maps.

Topics to be covered include the following:

•	 Lighting in Unreal Engine

•	 Using the Environment Light Mixer

•	 Enhancing real-time rendering with Virtual Shadow Maps, Nanite, and Lumen

Create Your World’s Atmospheric Lighting272

Technical requirements
To continue the development of this chapter, it is necessary to have a PC with Unreal Engine

5.5 (or a later version) installed that meets the recommended requirements by Epic Games:
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-

specifications-for-unreal-engine. Be sure to have active internet access on the system as well.

Lighting in Unreal Engine
In game development and virtual production, the quality and creativity of lighting can transform

a flat scene into one that truly comes alive. Unreal Engine 5 (UE5) offers a robust set of tools and

techniques that empower creators to achieve dynamic, realistic, and immersive lighting for any

project.

In any 3D environment, lighting serves several key purposes:

•	 Visibility: Ensuring that objects and characters are visible to the player or viewer

•	 Mood and atmosphere: Establishing emotional tones such as the warmth of a sunset or

the ominous darkness of a dungeon

•	 Realism and immersion: Increasing the scene’s believability by replicating real-world

lighting dynamics

•	 Guiding the viewer: Directing attention toward key elements within the scene

UE5 has transformed digital creation with groundbreaking features like Lumen, a fully dynamic

global illumination system, and Nanite, a virtualized geometry technology that allows for un-

precedented detail and complexity. These new technologies unlock new horizons in lighting,

empowering creators to achieve levels of realism and performance that were once unimaginable.

Still, it is important to understand some key concepts and functions of lights within Unreal before

starting any project.

Light mobility
Light mobility is a critical concept in Unreal Engine, defining how lights behave in terms of

movement and adaptation. This chapter explores the different types of lighting mobility and their

practical uses, and highlights the powerful Lumen Global Illumination system that distinguishes

UE5 in real-time 3D rendering.

https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine

Chapter 9 273

You can locate and select lighting mobility options within the Details panel of each individual light:

Figure 9.1 – Light mobility

Light mobility can be categorized into three primary types: Static, Stationary, and Movable. Each

type has distinct characteristics and use cases, impacting both the visual quality and performance

of your project. Let’s take an in-depth look:

•	 Static: It is fully precomputed and integrated into the environment, remaining unchanged

during gameplay. It’s ideal for objects and environments that do not require lighting

adjustments.

•	 Stationary: It provides a middle ground where lights can alter their color and intensity

during gameplay while keeping static shadows. This option suits scenarios needing some

dynamism without the computational demands of fully dynamic lighting.

•	 Movable: It is entirely dynamic, enabling both the light and its shadows to move and

evolve in real time. This flexibility offers enhanced realism but requires higher compu-

tational resources.

Create Your World’s Atmospheric Lighting274

The key features of movable lighting include the following:

•	 Full dynamism: Both the light and shadows can move and change in real-time,

enhancing realism and responsiveness

•	 Realistic interactions: Perfect for interactive and immersive environments where

lighting must dynamically respond to player and environmental changes

•	 Versatility: Ideal for dynamic elements such as flashlights, vehicle headlights, and

any scenario requiring real-time interaction with light

Throughout our entire project development, we will exclusively utilize Movable dynamic lighting,

which offers the advantages mentioned above.

With Movable lights handling real-time updates, it’s equally important to understand how Unreal

Engine manages global illumination under dynamic lighting conditions.

Dynamic global illumination (DGI) in UE5 refers to a set of techniques used to simulate realistic

lighting in real time, where light interacts with surfaces and dynamically changes based on the

environment and objects within it. The most notable implementation of this is through a system

called Lumen.

Exploring Lumen
UE5’s Lumen system represents a significant leap forward in real-time global illumination (GI).

Lumen provides DGI, allowing for realistic lighting in complex and changing environments with-

out the need for extensive precomputation. This section explores how Lumen works and how to

utilize it effectively.

Read more

Since our focus will remain on Movable lighting, you can refer to the Unreal Engine

documentation on Lighting for detailed information on Static and Stationary lighting:

https://dev.epicgames.com/documentation/en-us/unreal-engine/light-

types-and-their-mobility-in-unreal-engine?application_version=5.5.

https://dev.epicgames.com/documentation/en-us/unreal-engine/light-types-and-their-mobility-in-unreal-engine?application_version=5.5
https://dev.epicgames.com/documentation/en-us/unreal-engine/light-types-and-their-mobility-in-unreal-engine?application_version=5.5

Chapter 9 275

Lumen is a fully dynamic GI system that simulates how light interacts with surfaces and volumes

in real time. Unlike traditional baked GI solutions, Lumen responds immediately to changes in

lighting conditions, geometry, and materials. Its key advantages include the following:

•	 Immediate feedback: Changes in the environment are instantly reflected in the lighting,

enhancing creativity and iteration speed

•	 Realism: Accurate simulation of light bouncing off surfaces, capturing indirect lighting,

reflections, and shadow nuances

Lumen leverages several advanced techniques to achieve its results, including the following:

•	 Surface cache: A system that stores surface lighting information to be reused and updated

dynamically, ensuring efficient real-time performance

•	 Software ray tracing: A method for tracing light paths using software algorithms, enabling

high-quality reflections and indirect lighting without the need for hardware ray tracing

•	 Scene representation: A dynamic representation of the scene’s geometry and materials,

allowing Lumen to accurately calculate light interactions as the scene changes

Lumen is particularly powerful for the following:

•	 Open world environments: Providing dynamic day-night cycles and realistic environ-

mental lighting without extensive pre-baking

•	 Interior scenes: Achieving detailed and realistic lighting in indoor environments where

lights and shadows change frequently

•	 Interactive experiences: Enhancing VR and AR applications with real-time lighting ad-

justments that respond to user interactions and environmental changes

Lumen stands out as the best option for lighting a scene due to its real-time capabilities, high

visual fidelity, ease of use, performance efficiency, versatility across platforms, compatibility

with high-detail environments through Nanite, and the enhanced creative freedom it provides.

After understanding the key concepts of Lumen, let’s see what tools Unreal Engine makes available

to us to illuminate our projects, such as the Environment Light Mixer.

Create Your World’s Atmospheric Lighting276

Using the Environment Light Mixer
The Environment Light Mixer is an editor window that allows you to create and modify a level’s

environment lighting components, including sky, clouds, atmospheric lights, and sky lighting.

For designers and artists, this tool provides a centralized location to efficiently edit these com-

ponents, offering the flexibility to adjust the level of detail for the properties you need to access.

You can find the Env. Light Mixer window under the Window drop-down menu on the main

toolbar, as shown in Figure 9.2:

Figure 9.2 – Env. Light Mixer location

Once the Env. Light Mixer window is opened, we will see a window that does not contain any

additional information (only if we have started with a new empty level):

Figure 9.3 – The Environment Light Mixer, where you can directly and easily add all the Actors
needed to set your environment’s light system

Chapter 9 277

The buttons at the top of the window allow us to add the different Actors necessary to create a

basic lighting scheme in our project. Once added, we can control all their properties directly from

this window, making it easier to manage and adjust the Actors responsible for lighting. Once

added, our window should look like this:

Figure 9.4 – The Environment Light Mixer allows you full control over every detail of the Actors

Unreal Engine’s atmospheric Actors are designed to mimic the behavior of real-world lighting

and atmospheric effects. By understanding the real-world counterparts, creators can better utilize

these tools to achieve realistic and immersive environments in their projects.

Let’s see which Actors are included in Env. Light Mixer:

•	 DirectionalLight: In Unreal Engine, this Actor simulates sunlight. It is a key light source

that affects the entire scene uniformly, mimicking the parallel light rays emitted by the sun.

•	 SkyAtmosphere: This Actor in Unreal Engine simulates the scattering of light in the Earth’s

atmosphere, producing effects such as the blue sky, sunsets, and the transition of colors

during different times of the day.

•	 SkyLight: This Actor captures the ambient light from the sky and applies it to the entire

scene. It simulates the diffuse light that comes from the sky dome and affects areas not

directly lit by the sun.

•	 ExponentialHeightFog: This Actor simulates atmospheric fog that increases in density

with altitude, creating a realistic depth effect and softening the distant objects.

•	 VolumetricCloud: This Actor generates realistic clouds that can cast shadows and interact

with light dynamically, affecting the lighting conditions of the scene.

Let’s talk about these Actors in more detail in the subsequent sections.

Create Your World’s Atmospheric Lighting278

DirectionalLight
This light simulates illumination from a source located at an infinite distance, resulting in all

shadows being cast as parallel. This makes it the perfect option for replicating sunlight.

Light properties
Like other Actors, you can use this one with all different mobilities, allowing you to bake the

lighting if necessary or get all the full advantages of Lumen with full DGI. These parameters can be

adjusted in the Details panel of the Actor, giving you control over mobility settings and properties.

Let’s talk about the most important qualities of this Actor:

•	 Intensity: Controls the total energy emitted by DirectionalLight, directly affecting the

brightness of the sunlight in your scene. A higher intensity will result in a brighter, more

pronounced sunlight effect.

•	 Light Color: Defines the color of the sunlight. This can be adjusted to simulate different

times of day, such as warmer tones for sunrise or sunset and cooler tones for midday.

•	 Source Angle: Represents the angular size of the light source (sun) in degrees. By default,

it is set to 0.5357 to match the average apparent size of the sun. Increasing this value will

make the sun appear larger and soften the shadows.

•	 Indirect Lighting Intensity: Controls how much indirect (bounced) light is generated

by DirectionalLight. This is crucial for outdoor scenes to create realistic soft lighting in

shaded areas.

•	 Volumetric Scattering Intensity: Adjusts the intensity of volumetric scattering, influ-

encing how much light is scattered through atmospheric elements such as fog or mist,

contributing to the atmospheric depth of the scene.

•	 Specular Scale: Multiplies the strength of specular highlights, affecting how reflective

surfaces respond to sunlight, enhancing the realism of materials such as metal or water.

•	 Contact Shadow Length: Defines the distance at which the screen-space ray tracing

calculates contact shadows, producing sharper shadows where objects meet surfaces,

which is particularly important for detailed outdoor environments.

•	 Lighting Channels: Specifies which lighting channels DirectionalLight will affect, al-

lowing for greater control over how different objects or materials respond to the sunlight

in the scene.

Another important aspect of controlling the final look of the directional lights is related to the

visual behavior of the God rays, which we can control from the Light Shafts section.

Chapter 9 279

Light Shafts
Also known as God rays, we can create a light shaft just by enabling the option in the Details panel,

and in conjunction with Volumetric Fog, we can create interesting visual results in lighting, as

we can see in Figure 9.5:

Figure 9.5 – Light shaft effect combined with Volumetric Fog

Light Shafts has its own section in the Details panel of DirectionalLight, as shown in Figure 9.6:

Figure 9.6 – Light Shaft details

Create Your World’s Atmospheric Lighting280

In the Light Shafts section of DirectionalLight, we can try out the different light shaft methods

available, Light Shaft Occlusion and Light Shaft Bloom, depending on the situation and the

effect we want to achieve.

Light Shaft Occlusion is more effective when we have objects that directly cover the light source,

while Light Shaft Bloom is more effective when the light source is visible in the scene, and we

want to enhance its effect.

SkyLight
SkyLight captures the ambient lighting from distant parts of the level, such as the sky or far-off

objects, and uses that information to illuminate the scene. This ensures that the sky’s appearance,

including its lighting and reflections, remains consistent throughout the environment, regardless

of how the sky is generated, whether it’s from a dynamic atmospheric system, layered clouds, a

static skybox, or distant landscapes such as mountains. This consistency helps create a cohesive

look across the scene by blending the lighting of distant elements with nearby objects.

Alternatively, you can manually assign a custom Cubemap to SkyLight, as shown in Figure 9.7.

This feature allows for full control over the lighting and reflections, enabling you to use a spe-

cific image to dictate how the ambient light behaves in the scene. This is particularly useful in

cases where the sky or background isn’t directly tied to the lighting system, such as when using

pre-rendered sky textures.

Chapter 9 281

Figure 9.7 – SkyLight details

Additionally, SkyLight works seamlessly with Lumen for real-time GI, ensuring that lighting

changes dynamically based on the environment or the time of day, offering a high level of realism

for open worlds.

In the next section, we’ll explore how to configure SkyLight to get real-time feedback on the

overall look of our scene.

Movable Sky Light
When SkyLight is set to Movable, it functions entirely in real time without relying on precomputed

lighting data. This means it captures lighting and reflection information from all objects in the

scene, regardless of their mobility (static, stationary, or dynamic), and updates the lighting dynam-

ically as the scene changes. This makes it ideal for environments where lighting conditions need

to adapt in real time, such as outdoor open worlds with changing weather or time-of-day cycles.

Create Your World’s Atmospheric Lighting282

Real Time Capture
The Real Time Capture mode provides dynamic and specular environment lighting, making it

possible to perform dynamic time-of-day simulations with real-time reflections on scene elements.

This mode is available when the SkyLight mobility is set to Stationary or Dynamic and when

Real Time Capture is enabled from the SkyLight component Details panel.

Figure 9.8 – SkyLight Real Time Capture allows you to see the impact
of GI and reflections in real time

Chapter 9 283

The last Actor involved in the creation of our outdoor lighting system is SkyAtmosphere. This

works together with SkyLight and DirectionalLight to generate the sky dome in our scene. Let’s

see how it works.

SkyAtmosphere
The SkyAtmosphere component in Unreal Engine employs a physically-based rendering approach

to create realistic skies and atmospheric effects. This versatile system can simulate Earth-like at-

mospheres, allowing for authentic time-of-day transitions, such as stunning sunrises and sunsets,

as well as exotic extraterrestrial atmospheres. It provides an aerial perspective that facilitates

smooth transitions from ground to sky to outer space.

Here are its key features:

•	 Dynamic sky color: The sky color adapts based on the sun’s altitude, specifically how

closely the vector of the dominant directional light aligns with the horizon. This results

in natural color gradients as the sun rises and sets.

•	 Control over scattering and fuzzy settings: Users have full control over atmospheric

density through adjustable scattering parameters, allowing for customized visual effects

that suit various scenarios, from clear skies to dense fog.

•	 Aerial perspective: The system accurately models the curvature of the planet, providing

a realistic transition from the ground to the sky and beyond, enhancing the immersive

quality of the scene.

Additionally, the SkyAtmosphere system simulates light absorption using Mie Scattering and

Rayleigh Scattering techniques. These effects contribute to the realistic color changes of the

sky during different times of day by accurately depicting how light interacts with particles and

molecules in the atmosphere.

Create Your World’s Atmospheric Lighting284

The SkyAtmosphere Actor can be found in the Place Actor palette/menu under the VISUAL

EFFECTS tab, as shown in Figure 9.9:

Figure 9.9 – SkyAtmosphere Actor location inside the VISUAL EFFECTS tab

Now that we know the main features, let’s look at the sections involved in the process.

Rayleigh Scattering
In an Earth-like atmosphere, Rayleigh Scattering occurs when sunlight interacts with small

particles dispersed throughout the atmosphere. The upper atmosphere is significantly less dense

than the lower atmosphere, which is closer to the Earth’s surface. This difference in density plays

a crucial role in how light scatters and influences the color of the sky.

Chapter 9 285

Adjusting the particle density in the atmosphere affects the extent of light scattering. Here’s how:

•	 Decreased scattering: Lowering the particle density results in reduced light scattering,

simulating an atmosphere that is 10 times less dense than Earth’s. This creates a clearer

sky with less blue hue, making the sun appear more intense.

•	 Standard scattering: This level maintains atmospheric density similar to Earth’s, allowing

for natural light scattering. This configuration produces the familiar blue sky during the

day, along with realistic atmospheric effects.

•	 Increased scattering: Raising the particle density leads to enhanced light scattering,

mimicking an atmosphere that is 10 times denser than Earth’s. This results in a deeper

blue sky and more vivid atmospheric effects, creating a more dramatic visual experience.

Let’s see where these parameters are located in the Details panel of SkyAtmosphere:

Figure 9.10 – SkyAtmosphere Rayleigh controls

Create Your World’s Atmospheric Lighting286

In Figure 9.11, we can see our scene with the default values of Rayleigh Scattering, where, with a

low value, we can see the blue color of the sky due to the low scattering of the atmosphere:

Figure 9.11 – Default Rayleigh Scattering Scale

In Figure 9.12, we see how altering the Rayleigh Scattering intensity changes the overall tone of

the scene:

Figure 9.12 – Modified Rayleigh Scattering Scale

Mie Scattering
Mie Scattering occurs when light interacts with larger particles suspended in the atmosphere,

such as dust, pollen, or pollutants. These particles, referred to as aerosols, can be naturally oc-

curring or a byproduct of human activities.

Unlike Rayleigh Scattering, which primarily involves smaller particles, Mie Scattering tends to

absorb more light, resulting in a hazy appearance of the sky. This phenomenon causes light to

scatter predominantly in the forward direction, often creating bright halos around light sources

like the sun.

Chapter 9 287

Adjusting aerosol density can significantly influence the clarity and haziness of the sky. Here’s

how different levels of aerosol density affect the scattering:

•	 Decreased aerosol density: With a lower concentration of aerosols, the sky appears clearer

with reduced haze. Light scattering becomes less directional, resulting in a more vibrant

blue sky.

•	 Default Mie scattering scale: This setting represents a standard level of aerosol density,

offering a balanced look that combines clarity with natural atmospheric effects.

•	 Increased aerosol density: Higher aerosol concentrations lead to a more occluded and

hazy sky, characterized by pronounced forward scattering. This results in more significant

light halos around sources such as the sun, enhancing the atmospheric effect.

We can find these parameters in the Details panel, in the Atmosphere - Mie tab, as we can see

in Figure 9.13:

Figure 9.13 – Atmosphere Mie and Mie Scattering controls

Create Your World’s Atmospheric Lighting288

The default value in a project should give us a result like that in Figure 9.14:

Figure 9.14 – Default Mie Scattering Scale

In Figure 9.14, we can see the default behavior of Mie Scattering in SkyAtmosphere. We can see

the depth of the environment, and we see how the light source hits the trees in the scene directly.

If we increase the value, we can see the effect it has on the overall look of the scene, as well as

the lighting:

Figure 9.15 – Modified Mie Scattering Scale

In Figure 9.15, we can see the same scene with a high Mie Scattering value. There is a feeling of

fog in the environment, and we see how the atmospheric effects take center stage in the scene.

Additionally, the light that previously reached the trees now does not affect the environment.

Chapter 9 289

Art Direction
The SkyAtmosphere component offers artistic control, allowing you to customize the appearance

of your project’s sky and atmosphere to suit your creative vision.

The primary control is achieved through a Color Picker tool, which allows us to tint the sky with

the desired hue and saturation. This adjustment is applied in addition to the current settings of

SkyAtmosphere.

In Figure 9.16, we can see the color effect on the sky using the Color Picker tool in the Art Direc-

tion tab:

Figure 9.16 – Art Direction inside the SkyAtmosphere Actor

This section allows us to adjust the overall look of the scene, from modifying the sky color to con-

trolling its visual contribution to the environment. These adjustments are designed to create effects

that simulate atmospheres different from Earth’s, such as extraterrestrial or fantasy environments.

Create Your World’s Atmospheric Lighting290

Planetary atmospheres viewed from space
In addition to creating breathtaking atmospheres from a planet’s surface, the SkyAtmosphere

system in Unreal Engine enables the design of planetary atmospheres as seen from space. This

feature allows for a seamless transition from the planet’s surface, through its atmosphere, and

into outer space, without needing complex configurations or additional setups. This creates a

highly immersive experience, especially useful for space simulations or games involving plane-

tary exploration.

Figure 9.17 showcases an example of a planetary atmosphere as seen from space:

Figure 9.17 – Planetary atmospheres

To configure SkyAtmosphere for a specific planet, you can find the relevant parameters in the

Details panel under the Planet section. Here, you can adjust the planetary radius, atmospheric

layers, and other important variables that control how the atmosphere behaves and appears when

transitioning between the surface and outer space, as shown in Figure 9.18:

Chapter 9 291

Figure 9.18 – SkyAtmosphere details

So far, we have discussed fog generated by SkyAtmosphere, focusing on how lighting be-

haves under various atmospheric conditions. Now, we will explore a different Actor called

ExponentialHeightFog, which simulates fog accumulation in the lower parts of the scene.

Create Your World’s Atmospheric Lighting292

ExponentialHeightFog
ExponentialHeightFog adds greater density to lower areas of a map and reduces it at higher ele-

vations, with a smooth gradient that avoids abrupt cutoffs as altitude increases. This fog system

also offers two distinct fog colors: one for the hemisphere facing the dominant directional light

(or upward if none is present) and another for the opposite hemisphere.

Figure 9.19 illustrates the depth and spread of ExponentialHeightFog within a scene:

Figure 9.19 – Default ExponentialHeightFog

The effect is usually subtle, but when we compare it with the image without

ExponentialHeightFog, we can see in Figure 9.20 that the scene loses contrast:

Figure 9.20 – Not using ExponentialHeightFog

Chapter 9 293

Like SkyAtmosphere, ExponentialHeightFog can be found in the Place Actor menu, in the Visual

Effects category, as shown in Figure 9.21:

Figure 9.21 – ExponentialHeightFog location

Here you have some of the properties you will be able to use:

•	 Fog Density: Controls the overall density of the fog, determining its thickness across the

scene.

•	 Fog Inscattering Color: Defines the main color of the fog, influencing how the light scat-

ters within the fog.

•	 Start Distance: Sets the distance from the camera at which the fog begins to appear in

the scene.

Create Your World’s Atmospheric Lighting294

•	 Volumetric Fog: Enables Volumetric Fog, which provides a more realistic fog simulation.

The resolution of this simulation can be adjusted via Scalability Settings.

•	 Extinction Scale: Modifies how much light is absorbed by fog particles in Volumetric Fog.

Higher values make the fog more opaque by increasing light absorption.

•	 Override Light Color with Fog Inscattering Colors: When enabled, Fog Inscattering

Color will replace SkyLight’s Volumetric Scattering Color and Directional Inscattering

Color for DirectionalLight. For optimal results, ensure that Atmosphere Sun Light is ac-

tivated on DirectionalLight. However, keep in mind that this may produce non-physical

volumetric lighting that might not match the lighting on other surfaces.

The performance cost of using ExponentialHeightFog is comparable to having two layers of con-

stant density fog, but it comes with an optimization for Start Distance. By setting a start distance,

the fog in the area directly in front of the viewer can be excluded, which improves performance

by allowing for pixel culling through the Z-buffer.

Since we are discussing atmospheric effects such as ExponentialHeightFog, it’s also important

to cover another key component in Unreal Engine’s atmospheric toolkit, VolumetricCloud.

VolumetricCloud
The VolumetricCloud component in Unreal Engine offers a physically based system for rendering

clouds, using a material-driven approach. This enables artists and designers to create a diverse

range of cloud formations for their projects. The cloud system is highly dynamic, supporting

real-time time-of-day transitions, and seamlessly integrates with both the SkyAtmosphere and

SkyLight components in real-time capture mode. Its scalability ensures that it can adapt to a

variety of project needs, whether viewed from the ground, from the air, or transitioning from

the surface to outer space.

We can add VolumetricCloud from the PLACE ACTORS | Visual Effects | VolumetricCloud panel,

as we can see in Figure 9.22:

Chapter 9 295

Figure 9.22 – VolumetricCloud Actor

Actor coverage depends on the needs of the project; we can get excellent details both from in-

side the atmosphere and outside of it, as we can see in this image of Volumetric Cloud on Epic

Games (in the Directional Light Interactions and Shadowing section): https://dev.epicgames.

com/documentation/en-us/unreal-engine/volumetric-clouds?application_version=4.27.

A key feature of VolumetricCloud is the ability to block light and cast realistic shadows onto

surfaces below. The occlusion and shadowing of clouds are primarily controlled by atmospheric

lights and the volume material used to represent the clouds. These settings allow you to custom-

ize various cloud behaviors, including creating sunlight shafts and simulating self-shadowing

effects within the cloud masses.

The dynamic lighting system within Unreal Engine extends beyond just Lumen; it also incorpo-

rates two additional technologies that enable fully dynamic real-time lighting setups: Virtual

Shadow Maps and Nanite.

https://dev.epicgames.com/documentation/en-us/unreal-engine/volumetric-clouds?application_version=4.27
https://dev.epicgames.com/documentation/en-us/unreal-engine/volumetric-clouds?application_version=4.27

Create Your World’s Atmospheric Lighting296

Enhancing real-time rendering with Virtual Shadow
Maps, Nanite, and Lumen
UE5 introduces groundbreaking technologies that elevate the realism and performance of 3D

environments. This section explores two of these key innovations—Virtual Shadow Maps and

Nanite—and their interplay with the Lumen GI system. Together, these technologies enable

creators to achieve unprecedented levels of detail and dynamic lighting in real time.

Virtual Shadow Maps (VSMs) represent a new approach to shadow rendering in UE5, designed

to improve shadow quality and performance. Conceptually, VSMs are essentially very high-res-

olution shadow maps, currently implemented with a virtual resolution of 16k x 16k pixels. To

further enhance resolution for directional lights, VSMs utilize clipmaps.

You can find the Virtual Shadow Maps configuration options in Project Settings | Rendering |

Shadows | Shadow Map Method, as we can see in Figure 9.23:

Figure 9.23 – VSM options in Project Settings

Traditional shadow maps often struggle with issues such as aliasing, low resolution, and per-

formance overhead. VSMs tackle these challenges with a sophisticated method that splits the

shadow map into tiles (or pages) of 128 x 128 pixels. Pages are allocated and rendered only as

needed to shade on-screen pixels based on depth buffer analysis. This efficient system allows

pages to be cached between frames, further improving performance, unless invalidated by mov-

ing objects or light.

Real-time rendering in UE5 demands a balance between visual fidelity and performance. The

combination of Nanite, Lumen, and VSMs provides a powerful solution for achieving high-qual-

ity visuals without sacrificing performance. This section explores why it is a good practice to

use these technologies together when working in real-time and how they enhance the overall

rendering pipeline.

Chapter 9 297

When used together, Nanite, Lumen, and VSMs significantly enhance the visual fidelity of a scene.

Nanite provides intricate detail in geometry, Lumen ensures dynamic and realistic lighting, and

VSMs deliver high-quality shadows. This combination results in environments that are visually

stunning and immersive.

In Figure 9.24, we can see the Ray Traced Shadows options under Project Settings | Rendering |

Hardware Ray Tracing | Ray Traced Shadows:

Figure 9.24 – Project Settings | Ray Traced Shadows

In Figure 9.25, we can see a scene with meshes and geometries that include Nanite receiving

ray-traced shadows. Notably, some artifacts are visible in the scene, caused by Nanite utiliz-

ing an alternative mesh (Nanite Fallback) to project shadows onto the complex Nanite mesh.

Unfortunately, this results in the visual issues we observe.

This phenomenon highlights the importance of understanding how Nanite interacts with other

rendering technologies, particularly ray tracing. While Nanite allows for highly detailed geome-

tries, the fallback system is necessary for shadow casting. This may lead to visual discrepancies,

especially in intricate scenes where the shadow detail is critical for overall realism.

Figure 9.25 – Ray Traced Shadows enabled

Create Your World’s Atmospheric Lighting298

On the other hand, if we maintain consistency in the use of technologies such as Lumen, VSMs,

and Nanite, the difference in quality of the results is remarkable, as shown in Figure 9.26:

Figure 9.26 – Ray Traced Shadows disabled

The consistent application of advanced rendering techniques such as Lumen, VSMs, and Nanite

significantly enhances the overall visual fidelity of a scene. By leveraging the strengths of Lumen

for dynamic lighting, VSMs for high-quality shadow rendering, and Nanite for intricate geometry

detail, creators can achieve a level of realism that elevates the viewer’s experience. The seamless

integration of these technologies not only improves visual quality but also ensures optimal per-

formance in real-time applications.

Maintaining performance is critical in real-time rendering, especially for interactive applications

such as games and VR. The synergy between Nanite, Lumen, and VSMs optimizes the rendering

pipeline, ensuring that high-quality visuals do not come at the expense of performance. This

collaboration streamlines the development workflow, allowing artists and developers to focus

on creativity and iteration rather than manual optimization and tweaking.

Using Nanite, Lumen, and VSMs together in UE5 is a best practice for achieving high-quality,

real-time rendering. These technologies complement each other, enhancing visual fidelity, op-

timizing performance, and facilitating a smoother development process. By leveraging their

strengths, you can create detailed, immersive, and responsive environments that push the bound-

aries of real-time 3D rendering.

Chapter 9 299

The following chapters will delve deeper into specific use cases and advanced techniques for

maximizing the potential of these powerful tools. Specifically, for an in-depth discussion on

optimizing scene lighting and performance testing, you can refer to Chapter 12.

Summary
Throughout this chapter, we’ve explored the various lighting tools available in Unreal En-

gine for outdoor environments. By combining these Actors—DirectionalLight, SkyLight,

SkyAtmosphere, ExponentialHeightFog, and VolumetricCloud—it’s possible to create differ-

ent types of lighting. There is no single way to achieve the desired results, so I encourage you to

experiment and explore different combinations to achieve a variety of outcomes.

In the next chapter, we’ll discuss an Actor called Post Process Volume and its significance in de-

termining the final look of our scene.

Subscribe to Game Dev Assembly Newsletter!
We are excited to introduce Game Dev Assembly, our brand-new newsletter dedicated to every-

thing game development. Whether you’re a programmer, designer, artist, animator, or studio lead,

you’ll get exclusive insights, industry trends, and expert tips to help you build better games and

grow your skills. Sign up today and become part of a growing community of creators, innovators,

and game changers.

https://packt.link/gamedev-newsletter

Scan the QR code to join instantly!

https://packt.link/gamedev-newsletter

Create Your World’s Atmospheric Lighting300

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

10
Setting up your
Post Process Volume

The Post Process Volume (PPV) in Unreal Engine is a versatile and powerful actor designed to

give developers full control over the visual representation of their scenes. It works by applying

post-processing effects, such as Color Grading, Bloom, and Depth of Field, to achieve desired

aesthetic results.

These effects can enhance realism, establish mood, and focus the player’s attention on key ele-

ments within the game environment. The Post Process Volume can be set to either affect the entire

level or be limited to specific areas, offering flexibility in how visual styles are applied.

In this chapter, we will cover everything from the fundamentals of setting up a Post Process Volume

to advanced customization techniques. You’ll learn how to configure key properties, understand

the role of blending volumes, and leverage them for real-time, dynamic changes within your

scenes. By the end of this chapter, you’ll be equipped with the knowledge to effectively implement

post-processing in your open world environments, tailoring the visual experience to suit your

creative vision and gameplay needs.

Setting up your Post Process Volume302

Topics to be covered include the following:

•	 Exploring Post Process Volumes in Unreal Engine

•	 Color grading and tonemapping workflow

•	 Performance and frame rate considerations for Post Process Volume

•	 Exercise 10.1: Color adjustment in an outdoor scene

Technical requirements
To continue the development of this chapter, you’ll need a PC with Unreal Engine 5.5 (or a

later version) installed that meets the recommended requirements by EPIC Games: https://
dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-

specifications-for-unreal-engine. Be sure to check that the system also has an active inter-

net connection.

Exploring Post Process Volumes in Unreal Engine
To incorporate a Post Process Volume into your level, you can use the Place Actors panel. Once

the volume is positioned in your level, the Details panel will grant you access to its properties

and features, which are organized by categories based on their function and impact. The settings

specific to the Post Process Volume dictate how it interacts with the scene and other overlapping

volumes. For instance, enabling the Infinite Extent (Unbound) option allows the volume to in-

fluence the entire scene, while disabling it restricts the effect to a designated area. Additionally,

when multiple volumes overlap, you can manage their interactions to create seamless transitions

between different visual styles.

There isn’t a single definitive approach to configuring and setting up the Post Process Volume.

This is because it plays a key role in shaping the visual style of your project, which can be highly

subjective. Therefore, we’ll first cover the specific settings available and then delve into the general

workflow, explaining how to correct the scene.

Post Process Volume can be found within Menu | PLACE ACTORS palette, in the Volumes cat-

egory, as we can see in Figure 10.1:

https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine

Chapter 10 303

Figure 10.1 – Post Process Volume location

Setting up your Post Process Volume304

Once added to our level, we can see that the appearance of our Post Process Volume in the scene

is that of a cube without faces, as shown in Figure 10.2. We can leave this anywhere in our scene

without modifying it (if we want the configuration, we make to affect the entire level), or we can

play with its position and scale to determine the area of effect that interests us.

Figure 10.2 – Post Process Volume in the level

At first glance, the Post Process Volume may not seem to have a significant effect on the scene.

However, the real power lies in the Details panel, where its properties come into play. Here, you

can fine-tune a wide array of settings, such as exposure, contrast, and color correction, to shape

the final look of your environment.

When to use Post Process Volumes
So, the question you might ask is: Why use Post Process Volumes at all? Post-processing is a fast,

art-directable layer that lets you unify tone, guide the eye, and push mood without rebuilding

lighting or materials. Let’s have a look at some use cases.

•	 Global look control: A single unbound Post Process Volume to define the project’s baseline

tone mapping, exposure policy, and subtle color balance

•	 Diegetic transitions: Local Post Process Volumes for caves, interiors, underwater, dream

sequences—any zone where perception should shift as the player crosses a boundary

•	 Focus and readability: Slight vignette, gentle local exposure, or restrained Bloom to

increase subject clarity without over-brightening the whole scene

Chapter 10 305

Let’s also look at situations when we should be cautious about using Post Process Volumes:

•	 Over-processing: Heavy film grain, strong chromatic aberration, or aggressive vignette

can fatigue players and reduce readability, especially in UI-heavy scenes

•	 VR and fast-paced gameplay: Effects that warp edges or add latency (for example, heavy

DoF, intense lens effects) can harm comfort and responsiveness

•	 Inconsistent art direction: Too many local Post Process Volumes with conflicting settings

create visual discontinuities

Now that we’ve seen where Post Process Volumes are useful and where they can cause issues,

we’ll examine their main strengths and limitations. Understanding these trade-offs will guide

how you apply them across different scenes.

Here are the pros of using Post Process Volumes:

•	 Post Process Volumes are non-destructive, real-time, and highly art-directable. They

support smooth blending and per-area look authoring.

Now, we’ll dive into the cons of using Post Process Volumes:

•	 Some effects are not free; they cost GPU and can hurt clarity if overused.

•	 Complex overlaps require discipline (priority, blend radius, and weight management).

Like any visual tool, Post Process Volumes are most effective when used with intention. The

goal is to support player experience, not overwhelm it. Hence, decide the intent of the look first

(readability, mood, guidance). Then apply the minimum set of effects to achieve it. Finally, con-

tinuously test with movement, combat, UI, and varied displays.

Post Process Volume properties
The toolkit provided by Post Process Volume is extensive, making this actor (Post Process Volume)

crucial for determining the visual appearance of your level. Post Process Volume also influences

other aspects related to the overall setup of dynamic lighting, shadows, and path tracing.

In this section, we will focus specifically on the functions of the Post Process Volume and the

features that impact the visual aspects of the scene.

Setting up your Post Process Volume306

If we go to the Details panel, we can see all the sections that this actor includes, as shown in

Figure 10.3:

Figure 10.3 – PostProcessVolume properties in the Details panel

Chapter 10 307

Among the properties shown in Figure 10.3, we will now focus on Post Process Volume Settings

and explore the drop-down properties within:

•	 Priority: This property determines the priority level of the volume. In scenarios where

multiple volumes overlap, the one with the highest priority takes precedence over those

with lower priorities. If overlapping volumes share the same priority, the order in which

they take effect is undefined.

•	 Blend Radius: This defines the radius (measured in world units) around the volume that

is used for blending effects. For instance, as a player moves into a volume, the visual

appearance can differ from the area outside the volume. The blend radius creates a tran-

sitional zone around the volume.

•	 Blend Weight: This controls the degree of influence the volume’s settings have. A value

of 1 applies the settings at full strength, while a value of 0 negates their effect.

•	 Enabled: This setting controls whether the volume affects post-processing. When enabled,

its properties are applied and can blend with others. If not enabled, the volume has no

impact on the scene’s visuals.

•	 Infinite Extent (Unbound): This option controls whether the physical boundaries of the

volume are considered. When enabled, the volume influences the entire scene, regardless

of its physical size. If not enabled, the volume only affects the area within its specified

bounds. Infinite Extent (Unbound) is shown in Figure 10.4:

Figure 10.4 – Post Process Volume Settings

Setting up your Post Process Volume308

Features of Post Process Volume
In this subsection, we’ll explore the key post-processing effects available in Post Process Vol-

ume. To test the impact of changing these values, we will use the control image shown in Figure

10.5. For each effect discussed in the following sections—such as Color Grading, Bloom, and

Exposure—the adjustments will be applied to this image (if applicable), allowing us to observe

how each setting influences the scene’s visuals.

Figure 10.5 – Post Process Volume control image

With our base scene and a Post Process Volume selected, let’s look at the properties included one

by one, starting with the Lens section.

 Note

Since this Post Process Volume is set to Infinite Extent (Unbound), adjustments in

the Transform section (Location, Rotation, Scale) are not required.

Chapter 10 309

Lens section
The Lens category includes properties and settings that mimic typical real-world effects produced

by a camera lens, as seen in Figure 10.6:

Figure 10.6 – Post Process Volume Lens settings

Setting up your Post Process Volume310

Let’s take a look at these properties:

•	 Mobile Depth of Field: Much like real-world cameras, depth of field applies a blur to the

scene based on the distance from a focal point, either in front of or behind it. This effect

is commonly used in mobile applications and games to enhance visual depth and focus.

•	 Bloom: Bloom is a lighting artifact found in real-world cameras that enhances the per-

ceived realism of a rendered image by creating a glow around lights and reflective surfaces.

Bloom works in conjunction with other effects, such as lens flares and dirt masks, although

those are not addressed by the general Bloom properties. In Figure 10.7, the Bloom effect

is applied with an intensity of 0.2; the image on the left shows the Standard method,

while the image on the right illustrates the Convolution method:

Figure 10.7 – Bloom effects

•	 Exposure and Local Exposure: The engine automatically manages exposure, often re-

ferred to as eye adaptation, adjusting the brightness or darkness of the scene based on the

current luminance in view. This effect simulates the way human eyes adapt to varying

lighting conditions, such as transitioning from a dimly lit interior to a brightly lit exterior,

or vice versa. The Exposure category offers properties to select the exposure method and

to control how bright or dark the scene can become over a given period.

Additionally, there’s a feature called Local Exposure, which has its own set of properties.

Local Exposure allows for fine-tuned adjustments to exposure within artist-defined pa-

rameters, utilizing an edge-aware data structure that preserves luminance detail. This is

particularly valuable in high-contrast scenes, such as indoor environments with bright

outdoor areas visible through doors and windows.

Chapter 10 311

In Figure 10.8, you can see the scene’s exposure (Auto Exposure Histogram); the image

on the left has Exposure Compensation of -2, while the image on the right has +2 applied.

Figure 10.8 – Exposure – Exposure compensation

•	 Chromatic Aberration: Chromatic aberration is an effect that simulates the color shifts

seen in real-world camera lenses. This phenomenon occurs when light rays enter a lens

at different angles, causing the RGB colors to separate.

In Figure 10.9, the effect of Chromatic Aberration is shown with Intensity of 3.0 and Start

Offset of 0.8. The effect is most pronounced at the edges of the image:

Figure 10.9 – Chromatic Aberration

Setting up your Post Process Volume312

•	 Dirt Mask: Dirt Mask is a texture-driven effect that enhances the Bloom in specific areas

of the screen. It can be used to create the appearance of imperfections on a camera lens,

such as dirt or dust. To see Dirt Mask in action, the Bloom effect must be active.

In Figure 10.10, the Dirt Mask effect is demonstrated using the T_ScreenDirt02_w image

(included in the engine) for Dirt Mask Texture, with Dirt Mask Intensity of 75.

Figure 10.10 – Dirt Mask

•	 Camera: This category includes a set of properties that control the camera shutter and

cinematic depth of field.

•	 Lens Flare: The Lens Flare effect is an image-based technique that simulates the scattering

of light when viewing bright objects, due to imperfections in the camera lens. Similar to

Dirt Mask, Lens Flare works in conjunction with the Bloom effect.

Chapter 10 313

In Figure 10.11, the Lens Flare effect is applied to the scene with Intensity of 2.0, Bokeh Size

of 7.15, and Bokeh Shape derived from the Bokeh_5Sides image (included in the engine).

Figure 10.11 – Lens Flare effect

•	 Image Effects: This allows developers to apply Vignette and Sharpen effects that alter

the final rendered image in the scene.

•	 Vignette: Vignette is an image-based effect that gradually fades the image towards

the edges, creating a subtle borderless window, as we can see in Figure 10.12.

•	 Vignette Intensity: This setting controls the darkening of the screen corners, en-

hancing the vignette effect. Higher values increase the amount of vignetting, while

a value of 0 removes it.

Setting up your Post Process Volume314

Figure 10.12 – Vignette

So far, we have covered the Post Process Volume parameters corresponding to the Lens category

(see Figure 10.6). Now, let’s do an overview of the tools focused on Color Grading.

Color Grading section
The Color Grading and Film categories work in tandem to define much of the visual style of your

project. The Color Grading category offers properties that enable color correction of the rendered

scene, as shown in Figure 10.13:

Chapter 10 315

Figure 10.13 – Color Grading options for the Post Process Volume

Setting up your Post Process Volume316

Within the Color Grading category, you’ll find properties that allow you to control contrast,

color, saturation, and more, providing full artistic control over the appearance of the scene. The

available settings include the following:

•	 Color Temperature Control: Adjust the overall warmth or coolness of the image.

•	 Color Balance Properties: These allow for adjustments to the global tones, as well as

specific ranges, including shadows, midtones, and highlights.

•	 Miscellaneous: Additional options such as expanded gamut and Look-Up Tables (LUTs)

for more advanced color grading.

The controls related to Color Grading are distributed across several tabs. You can adjust the

temperature of the image, apply global adjustments, and fine-tune specific tones (Shadows,

Midtones, and Highlights). Within these sections, you have the ability to modify the Saturation,

Contrast, Gamma, Gain, and Offset of the image. Additionally, in the Misc category, you can find

the settings for Color Grading LUT.

Next, we will explore the Film section.

Film section
The Film section allows you to adjust the image response properties, as if it were a photographic

film. In Figure 10.14, we can see the available options:

Figure 10.14 – Film options inside the Post Process Volume details

The Film category includes properties that adhere to the Academy Color Encoding System (ACES)

standards, ensuring consistent color representation across various formats and displays. This

helps maintain the integrity of the source material, reducing the need for adjustments when new

mediums emerge. Let’s take a look at the properties under Film:

•	 Slope: This controls the steepness of the S-curve used in the tonemapper. Higher values

increase the steepness, resulting in a darker image, while lower values reduce the steep-

ness, making the image lighter.

Chapter 10 317

•	 Toe: This adjusts the dark tones in the tonemapper, influencing how the deepest shadows

are rendered.

•	 Shoulder: This adjusts the bright tones in the tonemapper, affecting how the brightest

highlights are displayed.

•	 Black clip: This determines the threshold where black colors start to lose detail and cut

off their value.

•	 White clip: This sets the point where white colors begin to clip, causing them to lose detail.

Adjustments to this setting are typically subtle.

In the next section, we will explore the different Global Illumination options available and their

associated properties.

Global Illumination section
Another key feature of the Post Process Volume is its ability to let you choose the Global Illumi-

nation method to be used in the scene, as well as to adjust certain parameters related to visual

quality and scene performance.

The Post Process Volume settings for Global Illumination allow you to choose the type of dynamic

global illumination to apply in your scene. Advanced properties provide options to adjust the

intensity and color of certain global illumination methods, such as precomputed lighting. These

are the primary global illumination methods available in the Post Process Volume:

•	 Lumen Global Illumination and Reflections: This method provides real-time global illu-

mination and reflections, enhancing the realism of your scene. (Enabled by default in UE5.)

•	 Screen Space (Beta): This technique uses screen space data to approximate global illu-

mination effects, balancing performance and visual quality.

•	 Ray Tracing Global Illumination: This method leverages ray tracing technology for

high-quality lighting and reflections, suitable for projects that prioritize visual fidelity.

 Important note

It’s also important to note that when working on a new project in Unreal Engine 5, the

default Global Illumination method used by the Post Process Volume will be Lumen.

Setting up your Post Process Volume318

•	 Advanced: In the Advanced section, you can adjust Indirect Lighting Color and Indirect

Lighting Intensity. The color picker allows you to change the color of the indirect lighting,

while the intensity setting lets you increase or decrease the amount of indirect lighting

applied to the scene.

Figure 10.15 – Global Illumination options inside the Post Process Volume

Additionally, there is a Film Grain effect that can be implemented to alter the overall look of

your scene.

Film Grain effect
Film Grain is an optical effect that simulates the look of processed photographic film. It can appear

as tiny, randomized particles and adds a filmic look to the rendered frame.

Here are the key properties related to the Film Grain effect:

•	 Film Grain Intensity: Controls the overall strength of the grain effect; higher values make

the texture more prominent.

•	 Film Grain Intensity Shadows: Adjusts how visible the grain appears in the darker re-

gions of the image.

•	 Film Grain Intensity Midtones: Defines grain visibility in the midtone range, helping

balance texture between dark and light areas.

•	 Film Grain Intensity Highlights: Sets how strong the grain appears in brighter portions

of the frame.

•	 Film Grain Shadows Max: Limits the maximum grain intensity applied to shadow areas.

•	 Film Grain Highlights Max: Caps the maximum grain effect on highlights to avoid over-

exposure noise.

Chapter 10 319

•	 Film Grain Texel Size: Determines the scale of the grain pattern; lower values create finer,

denser texture, while higher ones yield coarser grain.

•	 Film Grain Texture: Specifies the texture asset used to generate the grain pattern for the

filmic look.

In Figure 10.16, we can see the effect of Film Grain using the following settings: Film Grain In-

tensity set to 1 and Film Grain Texel Size set to 5:

Figure 10.16 – Film Grain details inside the Post Process Volume

One of the major advantages of using the Post Process Volume is the ability to make adjustments

and see the results in real time within Unreal Engine. This real-time feedback allows you to fine-

tune your scene’s visual effects with precision.

Additionally, you can experiment with different transitions between properties of multiple Post

Process Volumes by placing them within each other and correctly applying Priority Order. Next,

we will discuss a workflow focused on color grading and tonemapping adjustments.

Setting up your Post Process Volume320

Best practices for overlapping and blending
The following best practices will help you structure and organize your Post Process Volumes

more effectively:

•	 Start global, then local: Define a stable global Post Process Volume (unbound) for expo-

sure and tonemapper. Add local Post Process Volumes only for specific perceptual goals.

•	 Use Priority and Blend Radius deliberately: Higher priority wins on overlap; set Blend

Radius to 0 to avoid popping on entry/exit.

•	 Limit the number of stacked volumes: Too many overlapping Post Process Volumes

complicate debugging and can create muddy looks. Prefer fewer, clearer regions.

•	 Transition volumes between extremes: Place an intermediate Post Process Volume

between very bright and very dark areas to smooth exposure transitions (avoid eye-

adaptation whiplash).

•	 Document intent: Add a one-line comment in the Post Process Volume’s Description

field about what it’s for (e.g., Cave cool/low-contrast).

Once your Post Process Volumes are well structured and transitions behave smoothly, the next

step is to refine the image itself. This is where color grading and tonemapping come into play.

Color grading and tonemapping workflow
At this point, we’ve covered the properties and settings available within the Post Process Volume.

In this section, we’ll discuss a straightforward workflow focused on color grading and tonemap-

ping, which will enable you to efficiently work on color correction and initial image adjustments.

Color grading is the process of adjusting the color and tonal values of an image to achieve a

desired aesthetic or mood. This involves altering the brightness, contrast, saturation, and hue of

specific colors to create a cohesive look that enhances the storytelling of the scene.

Tonemapping, on the other hand, is a technique used to map the wide range of colors and bright-

ness levels in a high dynamic range (HDR) image to a more limited dynamic range suitable for

display. This process helps maintain detail in both bright and dark areas, ensuring that the final

output appears balanced and visually appealing.

Chapter 10 321

The workflow looks like this:

Figure 10.17 – Color grading and tonemapper workflow

These are the steps:

1.	 Turn off Auto-Exposure directly in the Project Settings (under the Rendering tab).

2.	 Set the color temperature in Post Process Volume Details (under White Balance).

3.	 Adjust Film, which is the main tonemapper; this will apply to the Global project.

4.	 Then, color-correct globally or per shot, as needed.

5.	 In case of some extra global color tuning, you can use the Shadow/Midtones/Highlights

controls.

The parameters we have discussed have a substantial impact on the visual appearance of our

scene. Achieving different looks and understanding which settings to modify requires time and

a lot of practice. Before we move on to the exercise, let’s have a look at performance and frame-

rate considerations for Post Process Volume.

Setting up your Post Process Volume322

Performance and frame-rate considerations for Post
Process Volume
Post effects run every frame. Some are light (cheap to compute) and others are heavy (costly).

Knowing which is which helps you keep a smooth frame rate without sacrificing the look.

Using a mental model
Before optimizing, it helps to classify post-processing effects by their typical performance cost.

Use the following as a mental model when deciding which to apply and at what intensity. This

is especially useful for new or intermediate users:

•	 Heavy hitters (use sparingly): Ray-Traced GI, Circle DOF, Convolution Bloom, high-

quality SSAO/SSGI, and Lumen at high quality. While it is great for hero shots, it’s risky

for fast gameplay.

•	 Middle weight (tune carefully): Default Lumen GI/Reflections, SSGI, SSAO, Local

Exposure, Motion Blur. Often fine if values are conservative.

•	 Lightweight (generally safe): Color Grading (LUT), subtle Vignette, mild Chromatic

Aberration, default Auto Exposure, Sharpen (low).

How to test quickly
Once you’ve identified which effects might impact performance, verify their actual cost in your

scene. A quick, repeatable test will help you measure GPU impact objectively:

1.	 Make a baseline (target resolution and screen percentage). Run Stat Unit and Stat GPU.

2.	 Toggle one effect at a time in the Post Process Volume and watch the GPU column (per-

pass time). If the frame time jumps, the effect is costly in your scene.

3.	 Re-test at a higher screen percentage (for example, 120–150%). If the cost grows a lot, that

effect scales with resolution.

4.	 After changes, check UI/HUD readability and comfort (especially VR and competitive

modes).

With performance considerations in mind, let’s now shift our focus from optimization to creative

control, applying these concepts in a practical color adjustment exercise. In the following exercise,

we will apply the concepts learned about the Post Process Volume to create a specific aesthetic

for our scene. We’ll explore how each parameter influences the final output and experiment with

various adjustments to enhance our project’s overall visual quality. Let’s get started!

Chapter 10 323

Exercise 10.1: Color adjustment in an outdoor scene
Let’s put the concepts we’ve learned about so far into practice by giving our scene a distinct look

using a Post Process Volume:

1.	 First, we will add a Post Process Volume into our scene through the Place Actors menu.

Let’s set it to Infinite Extent (Unbound) so it will affect the whole scene, as we can see

in Figure 10.18:

Figure 10.18 – Enable Infinite Extent

2.	 Let’s adjust Temperature Type to Color Temperature, set Temp to 9800, and adjust Tint

to 0,048:

Figure 10.19 – Set the desired color temperature

Setting up your Post Process Volume324

3.	 Next, let’s set the Global color correction to 1.1 and Contrast to 1.2.

Figure 10.20 – Color adjustments

4.	 Let’s now make some secondary changes to the Post Process Volume. We can add some

Bloom, Chromatic Aberration, and other effects that will make our scene pop out. In

Figure 10.21, you can see the additional adjustments made to the scene, adjusting Bloom,

Lens Flares, Chromatic Aberration, and Dirt Mask.

Chapter 10 325

Figure 10.21 – Secondary adjustments

All these adjustments depend on the specific scene and the look you’re trying to achieve. The key

is to follow a structured workflow, as it is designed to contribute linearly to the final look of your

project. This approach ensures that each step builds upon the previous one, leading to a cohesive

visual style, as demonstrated in Figure 10.22:

Setting up your Post Process Volume326

Figure 10.22 – Final look of the Post Process Volume control image

When we talk about color adjustment, there is no single correct answer. In fact, two artists may

produce completely different looks for the same scene due to the many factors at play. The key

is to adhere to an organized workflow that doesn’t hinder the subsequent steps as the project

develops. This ensures a smoother creative process and allows for flexibility in achieving the

desired aesthetic while maintaining consistency throughout the project.

Summary
In this chapter, we explored the significance of the Post Process Volume in shaping the visual as-

pect of our scene, as it plays a crucial role in defining the final look. We covered how it can impact

the scene both locally and globally, how to blend different Post Process Volumes, and focused on

the controls related to color adjustment. We also emphasized the importance of the Post Process

Volume in managing scene lighting, and we tested all the controls within a workflow to develop

the final look of our scene.

As a final recommendation, the Post Process Volume should always be present in your scene. It’s

a versatile actor that allows for simple adjustments to effects and lighting. Even during the de-

velopment process, it’s essential to make temporary adjustments to facilitate progress.

In the next chapter, we will delve into programming logic and Blueprints to implement automated

tools for developing our environments.

Chapter 10 327

Subscribe to Game Dev Assembly Newsletter!
We are excited to introduce Game Dev Assembly, our brand-new newsletter dedicated to every-

thing game development. Whether you’re a programmer, designer, artist, animator, or studio lead,

you’ll get exclusive insights, industry trends, and expert tips to help you build better games and

grow your skills. Sign up today and become part of a growing community of creators, innovators,

and game changers.

https://packt.link/gamedev-newsletter

Scan the QR code to join instantly!

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

https://packt.link/gamedev-newsletter
http://packtpub.com/unlock

Part 4
Blueprints, Testing,
and Optimization

This part focuses on the technical refinement and performance aspects of your Unreal Engine

project. It starts by introducing programming logic through Blueprints, Unreal Engine’s node-

based visual scripting system used to create interactivity and reusable tools. You’ll then learn

how to evaluate and optimize your scene using profiling techniques that reveal performance

bottlenecks in geometry, lighting, and materials.

The final chapter outlines best practices for maintaining balance between visual fidelity and

efficiency, preparing your project for stable, high-quality real-time execution.

This part of the book includes the following chapters:

•	 Chapter 11, Understanding Programming Logic and Blueprints

•	 Chapter 12, Optimizing and Testing Your Scene

11
Understanding Programming
Logic and Blueprints

The Blueprint system is a visual scripting tool that empowers both artists and developers to

design and implement complex game functionalities without the need to write traditional code.

This allows artists to create tools that can streamline and enhance the environment creation

workflow, offering greater flexibility and efficiency.

Blueprints are based on a node-based interface, which simplifies the process of developing func-

tionalities, eliminating the requirement for programming knowledge.

The classes defined within this system are referred to as Blueprints. These Blueprints enable the

prototyping of any element that can be placed within a scene (or not), allowing it to participate

in the game’s functionality and be replicated as needed.

This chapter introduces you to Blueprint programming, covering the basic concepts and funda-

mental principles for its effective use.

These are the key topics to be covered:

•	 Basic concepts of programming with Blueprints

•	 Exploring Blueprint types

•	 Creating a Blueprint Class

•	 Exercise 11.1: Developing a tool for randomly placing Static Meshes

•	 Exercise 11.2: Creating Blueprints with components

•	 Debugging and optimizing Blueprints

Understanding Programming Logic and Blueprints332

Technical requirements
To continue the development of this chapter, you’ll need a PC with Unreal Engine 5.5 (or a

later version) installed that meets the recommended requirements by EPIC Games: https://
dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-

specifications-for-unreal-engine. Be sure to check that the system also has an active inter-

net connection.

Basic concepts of programming with Blueprints
Before we begin constructing our first Blueprints, it’s essential to understand some fundamental

concepts related to their operation and structure.

Nodes
Nodes represent actions, events, or functions. Each node has a specific purpose, such as moving

an object, triggering an animation, or checking a condition.

Connections
Nodes are linked together through connections that define the flow of execution and data transfer.

These connections are categorized into two main types: execution wires (represented by arrows)

and data wires (represented by lines).

In Figure 11.1, we can see the anatomy of the connections of a node:

Figure 11.1 – Node connections

https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine

Chapter 11 333

The construction of a Blueprint is done by joining different types of logic, called nodes, which

are organized into categories. We can see them by right-clicking on the Blueprints workspace:

•	 Execution flow: The sequence of instructions that are executed in order by the processor.

•	 Branching: A split in the execution flow.

•	 Variable: A piece of data stored with a name that can be retrieved, modified, and operated

upon.

•	 Event: A node that initiates an execution flow when triggered.

•	 Function: An execution flow that performs a specific task. It can receive parameters, return

values, and may have restricted access.

•	 Mathematical expression: A mathematical operation collapsed into a single node.

•	 Macro: A set of operations grouped together to simplify reuse.

In Figure 11.3, we can see the basic construction of a Blueprint, where we can see the execution

from an event and its execution flow until reaching the corresponding function.

Understanding the internal logic of Blueprints is important when creating and debugging projects.

It is possible to use different types of Blueprints in our projects, which we refer to as Blueprint types.

Exploring Blueprint types
Let’s look at some of the types of Blueprints available within Unreal Engine in the following

sections.

Level Blueprint
A Level Blueprint is a level-specific type of Blueprint that contains logic and events affecting the

entire level in which it resides. The Level Blueprint is directly tied to a particular level and is used

to manage events and behaviors involving multiple actors or systems within that level.

Blueprint Class
Commonly referred to simply as a Blueprint, this type allows creators to easily develop func-

tionalities. A Blueprint Class encapsulates data and methods, providing a modular and reusable

structure for creating dynamic and interactive content. When defining a Blueprint Class, you can

establish a set of characteristics and functionalities that will be inherited by all instances of that

class, ensuring consistency and efficiency in game design.

Understanding Programming Logic and Blueprints334

Data-Only Blueprint
A Data-Only Blueprint is a Blueprint Class that contains only the code (in the form of node

graphs), variables, and components inherited from its parent. These allow inherited properties

to be adjusted and modified, but new elements cannot be added.

Blueprint Interface
A Blueprint Interface is a collection of one or more functions—just the names, without imple-

mentation—that can be added to other Blueprints. Any Blueprint that has the Blueprint Interface

added will have access to those functions.

Blueprint Macro Library
The Blueprint Macro Library is a container that holds a collection of macros or standalone graphs

that can be placed as nodes in other Blueprints.

Blueprint Utilities
A Blueprint Utility is an editor-only Blueprint that can be used to perform editor actions or ex-

tend editor functionality.

Now that we have a better understanding of the structure of Blueprints and their typology, let’s

start creating our first Blueprint Class.

Creating a Blueprint Class
The most common way to create a Blueprint Class is as follows:

1.	 Right-click in Content Browser.

2.	 Select the shortcut in the CREATE BASIC ASSET section or choose the Blueprint Class

option from the Blueprint menu.

In Figure 11.2, we can see the Blueprint Class creation options from the Content Browser:

Chapter 11 335

Figure 11.2 – Create Blueprint

Understanding Blueprint Class hierarchy
When creating a Blueprint, after completing steps 1 and 2 of the Creating a Blueprint Class section,

Unreal Engine will prompt you to select a base class for your Blueprint. A window will automati-

cally appear, allowing you to choose the appropriate Blueprint Class (as shown in Figure 11.3). This

step is crucial as it defines the core functionality and characteristics your Blueprint will inherit.

Figure 11.3 – Select the parent class

Understanding Programming Logic and Blueprints336

Unreal Engine uses an object-oriented programming (OOP) approach, meaning the engine is

organized around discrete elements called objects. An object consists of properties, which can

typically be viewed in the Details panel for the selected item in the level and often within the

Blueprint Editor itself.

Objects are structured hierarchically into classes, which means an object inherits properties from

its parent in the hierarchy. This allows objects to inherit attributes and behaviors from their parent

classes, with the ability to modify or add new ones.

All Blueprint classes in Unreal Engine are inherited from the base class, UObject. The hierarchy

follows this pattern: Object >> Actor >> Pawn >> Character.

For example, the Character class inherits properties and behaviors from the Pawn class, which

inherits from the Actor class, and so on, all the way up to UObject.

In Figure 11.3, you can see a list of common classes. Under the ALL CLASSES section, you can find

every class available in Unreal Engine.

The most used classes include the following:

•	 Actor: Contains a Transform component with data for position, rotation, and scale. It

can be present in the scene from the start or spawned during runtime. It can also contain

other components.

•	 Pawn: An Actor that can be possessed and receive input from a controller.

•	 Character: A type of Pawn with the ability to walk.

•	 Player Controller: An Actor responsible for controlling a Pawn.

•	 Game Mode Base: Defines the rules of the game.

For this chapter, we will focus on Blueprints of the Actor class, as they provide the most common

functionalities. Selecting a class for your Blueprint will define its characteristics.

In this case, we will create an Actor class Blueprint, BP_Rocks, as it needs to be placed in the level

and have components added to it.

In Figure 11.4, we can see how the newly created Blueprint Actor looks inside the Content Browser:

Chapter 11 337

Figure 11.4 – Blueprint Class

As you can see, it is quite easy to create any type of Blueprint and assign different classes to them

as needed. Now, let’s see what is inside this new Blueprint.

Exploring the Blueprint interface
Double-click on the previously created Blueprint to access the Blueprint interface menu. Within

this interface, we have the ability to define components, handle events, and organize and mod-

ularize processes for our Blueprints.

In Figure 11.5, we can see the structure of the editor, where you can visually script logic and man-

age the overall Blueprint setup:

Figure 11.5 – Overview of Blueprint Editor

Understanding Programming Logic and Blueprints338

Let’s look at a breakdown of the menus we have available:

1.	 Toolbar: Quick access to the most commonly used tools.

2.	 Components: A tab to add different types of objects to the Blueprint.

3.	 My Blueprint: A tab where you can create various elements, such as functions, macros,

variables, and so on.

4.	 Viewport: This only appears in Blueprints for objects with spatial presence. It displays

a prototype in the scene showing how a standard instance of the Blueprint would look

in space.

5.	 Construction Script: A dedicated space for programming the Blueprint’s constructor

(and its instances).

6.	 Event Graph: Spaces dedicated to event programming, where the node system can be

viewed.

7.	 Details: Shows the properties of the selected element, which can be modified.

8.	 Compiler Results: Displays the results of the Blueprint’s compilation.

As you can see, the Blueprint interface is quite simple (very similar to the Material Editor inter-

face). It is designed so that both artists and programmers can work in the same space without

needing to write code to implement logic within the engine. With that said, let’s move on to the

next section, where we will develop a tool for randomly placing elements within our levels.

Exercise 11.1: Developing a tool for randomly
placing Static Meshes
In this exercise, we will develop a tool to randomly place Static Meshes using a series of variables.

This tool can be highly useful in environment creation, allowing you to quickly and randomly

position elements in the scene. Let’s get started!

Creating a Blueprint of the Actor class
The first step is to create a Blueprint of the Actor class, then place it in the scene (BP_Rocks).

Follow these steps:

1.	 To place a Blueprint in the scene, simply drag it from the Content Browser into the level.

2.	 Now, open the Blueprint.

Chapter 11 339

3.	 To create tools that work during environment creation, they need to function within

the editor. For this, we’ll use Construction Script. Construction Script allows you to

create the logic necessary for the tool to function outside of scene execution. Enter the

Construction Script tab to start.

Figure 11.6 – Construction Script

Adding nodes
Before programming the tool, it’s essential to understand a couple of concepts needed for this

practice.

•	 Loop (For Loop): Executes a loop for each index

•	 Variable: A variable allows storing a value that can be accessed later.

This tool will have the capability to define how many Static Meshes need to be created, and to

establish that number, a node called For Loop will be used. Loop Body will execute a set num-

ber of times, defined by the integer values between First Index and Last Index. The Index pin

outputs an integer specifying how many times the loop has been executed. The Completed pin is

triggered after the last loop finishes.

In Figure 11.7, we can see the For Loop node and the nodes that compose it:

Figure 11.7 – For Loop node

Understanding Programming Logic and Blueprints340

Creating nodes in Unreal Engine is straightforward:

1.	 Simply right-click in Graph and a menu will appear listing the available nodes.

2.	 It’s important to keep the Context Sensitive option enabled (as seen in Figure 11.8) to

limit the search to nodes related to the Blueprint or node you are currently working with.

Figure 11.8 – For Loop – Context Sensitive

3.	 Another way to search for nodes is by dragging a wire (holding the left mouse button) and

releasing it. After that, simply type the name of the node and press Enter to add it to Graph.

Chapter 11 341

Figure 11.9 – Create node

4.	 Now, you need a node called Add Static Mesh Component, which allows us to access its

transformation, meaning its location, rotation, and scale.

Figure 11.10 – Add Static Mesh Component

Understanding Programming Logic and Blueprints342

5.	 To access the location, rotation, and scale, the Relative Transform input needs to be sep-

arated. Right-click on the input to do this. Once the structure is separated, we will leave

it like this (we will return to this struct to define the area of our tool). Next, we are going

to define the mesh that we want to instantiate.

Figure 11.11 – Split Struct Pin

6.	 To add a Static Mesh, select the node and go to the Details panel.

7.	 In the Static Mesh section, choose the mesh you want to add.

Next, you need to create values that control the number of repetitions generated by For Loop,

as well as the location, rotation, and scale of the created Static Meshes. This will be done using

variables.

Adding variables
As previously mentioned, a variable can store different types of data, ranging from numerical and

textual to vector data. Each variable will belong to a specific type and can only be of that type.

To create a variable in a Blueprint, there are several methods:

1.	 Right-click on the input to which you want to connect a variable and select Promote to

Variable. This will automatically create a variable of the appropriate type needed for that

input and connect it, as shown in Figure 11.12:

Chapter 11 343

Figure 11.12 – Create variable

This is a simple way to create a specific variable depending on the node you are working

with.

2.	 The other method is to create variables directly from the My Blueprint section (3 in Figure

11.5), where you can manually create various types of variables. This gives you full control

over the type and properties of the variables you need for your Blueprint logic.

From the My Blueprint tab, click the plus (+) symbol to create a variable.

Figure 11.13 – Create variable

By clicking on the + sign, you’ll see that there are different types of variables depending

on the type of value they store, as shown in Figure 11.14:

Understanding Programming Logic and Blueprints344

Figure 11.14 – Variable types

Here is a list of common variable types available in Unreal Engine.

•	 Boolean: True/False

•	 Byte: Uses 8 bits and represents values between 0 and 255

•	 Integer: Whole number

•	 Integer 64: Larger whole numbers

•	 Float: Real number

•	 Name: Text used to identify something within the game

•	 String: Text – comparing two name variables is faster than comparing two string

variables

•	 Text: A string of text that is always visible and can be translated

•	 Vector: Describes the x, y, z position of a component

•	 Rotator: Describes the orientation in x, y, z

•	 Transform: Contains translation, rotation, and scale in 3D space

Chapter 11 345

Knowing how to create variables and the types that exist, it is good practice to use them

to store any values that may be needed later. This way, you can easily access and modify

them when necessary.

3.	 For this exercise, we will create two Float variables that we will need for our Blueprint:

•	 Area, with a default value of 500

•	 Scale, with a default value of 1

To set the default value, it is necessary to go to the Compile button to make the Default

Value field visible. Additionally, we will enable the checkboxes for Instance Editable and

Expose to Cinematics, as shown in Figure 11.15:

Figure 11.15 – Area and Scale variable configuration

With this, we will have the necessary variables created to complete our Blueprint.

4.	 If we go back to our For Loop node, in Last Index, we should have a variable created (as

shown in Figure 11.8), where we can set the number of elements we want to distribute in

space (set this value to 1).

5.	 To make the variables visible in the editor and allow their values to be changed without

entering the Blueprint, simply enable Instance Editable in the Details panel.

6.	 It will also be necessary to connect Construction Script to the For Loop node, as shown

in Figure 11.16:

Understanding Programming Logic and Blueprints346

Figure 11.16 – Variable input

The next step is to control the transform where the Static Meshes are created.

Controlling the transform where the Static Meshes are
created
For this, we’ll use the variable created to store the position. However, since we want the position

to be random and only affect the XY plane (i.e., the Z position won’t be modifiable), this will allow

us to control the area where the Static Meshes appear. Follow these steps:

1.	 To achieve this, the variable is multiplied (using the Multiply node) by a random value

defined by the Random Unit Vector node.

2.	 After that, the resulting vector is separated (Break Vector) so that only the XY axes are

affected.

3.	 Then, these must be combined again using a Make Vector node.

4.	 By using the XY nodes, the Static Meshes will be positioned within that plane.

5.	 This setup is then connected to the Location input of the Add Static Mesh Component

node. This setup can be seen in Figure 11.17:

Figure 11.17 – Area distribution of the Static Mesh

Chapter 11 347

6.	 The next step is to add the Scale variable and connect it to Relative Transform Scale of

the Add Static Mesh Component node. This will allow us to configure the global scale

of all Static Meshes created from the editor.

7.	 Finally, we can go to the Add Static Mesh Component node and select the Static Mesh

we would like to instantiate.

With this, we will have completed the construction of our tool. The general structure of this setup

can be seen in Figure 11.18:

Figure 11.18 – Script finished

This Blueprint can be dragged and placed anywhere in the scene to randomly distribute the

Static Mesh defined within the Blueprint. You can define the number of elements, the area of

effect, and the global scale.

Understanding Programming Logic and Blueprints348

In Figure 11.19, you can see how the tool looks by default when added to a working level:

Figure 11.19 – Blueprint in the level

Now, if we go to the Details panel while selecting our newly created Blueprint, we can adjust the

number of instances, the area, and the scale of the Static Meshes directly in the editor, as shown

in Figure 11.20:

Figure 11.20 – Variables in the Details tab

In this exercise, we created a Blueprint tool in Unreal Engine to randomly place Static Meshes in

a scene. We configured variables for instance count, area, and scale, and used nodes to manage

mesh positioning and transformations. This tool streamlines environment creation by allowing

quick adjustments directly in the editor, enhancing both flexibility and efficiency.

In the next exercise, we will work with components to modify various aspects of these elements.

Chapter 11 349

Exercise 11.2: Creating Blueprints with components
In this exercise, we will focus on creating a Blueprint that incorporates various components to

be used in the environment, and we will program the logic to modify some of their properties.

This allows us to create containers for complex assets, making them easier to manage directly

from the level.

Creating a Blueprint of the Actor class and adding
components

1.	 Start by creating a new Blueprint of the Actor class. You can do this by right-clicking in

Content Browser and selecting the shortcut at the top of the menu, or by going to the

Blueprint section of the contextual menu (as shown in Figure 11.2). Name it BP_Assembly_01.

2.	 Once created, open the Blueprint and add the required components to build the asset.

To add components, use the Components panel (located in the upper-left corner of the

Blueprint menu) and click the Add button to search and include the needed elements.

For this exercise, we will use the following components:

•	 Static Mesh

•	 Niagara Particle System Component

•	 Rect Light

To add a component, simply type its name in the search bar within the Components

panel, as illustrated in Figure 11.21:

Figure 11.21 – Add component

Understanding Programming Logic and Blueprints350

3.	 Once the Static Mesh component has been added, it’s necessary to select the specific Static

Mesh Asset you want to include. This can be done through the Details panel. You can add

as many Static Meshes as needed for the desired Blueprint composition.

4.	 As components are added to a Blueprint, a hierarchy is automatically created, allowing for

better asset management. This hierarchy helps organize the asset structure. The hierarchy

structure, as shown in Figure 11.22, can be modified by clicking and dragging components

to move them up or down. The hierarchy is significant based on the operations performed,

as changes made to the primary element will propagate to the elements below it.

Figure 11.22 – Component hierarchy

Chapter 11 351

Once the elements are created and configured (including Rect Light), the result can be seen in

the Blueprints Editor, as shown in Figure 11.23:

Figure 11.23 – Final composition in Blueprint Editor

The final goal of this Blueprint is to provide logic and functionality to the Rect Light component,

allowing us to later adjust its intensity directly from the editor.

To achieve this, once the desired components are created, we need to access the properties of these

components. In order to modify their values, a reference must be created to the Rect Light element.

Creating a reference
A reference allows us to access the properties of a component to modify its values. Since we aim

to adjust the properties of the components in the editor, all the programming will be done in

Construction Script.

Understanding Programming Logic and Blueprints352

Creating a reference in a Blueprint is quite simple. Here’s how to access the light properties for

modification:

1.	 Drag the Rect Light component from the Components tab into Graph. This creates a Rect

Light node, serving as a reference to the component, as shown in Figure 11.24:

Figure 11.24 – Component reference

2.	 With this reference, we can now access the properties of the Rect Light component that

was added earlier. To modify the desired property, simply drag a wire from the reference

node and search for the specific property. In this case, we will be adjusting the intensity

and color of the light.

When searching for a node from the reference (with Context Sensitive enabled), the

options presented are relevant to the type of reference, as shown in Figure 11.25. This en-

sures that only appropriate properties and functions related to Rect Light are available

for modification.

Figure 11.25 – Set intensity node

3.	 The nodes we need are Set Intensity and Set Light Color, both of which can be found by

dragging from the Rect Light reference to configure the desired parameters.

•	 For Set Intensity, we will need to create a variable to establish the new light in-

tensity. This can be done by right-clicking on the node and selecting Promote to

Variable, which will automatically create a Float variable connected to the node.

After compiling, an initial intensity value must be set.

Chapter 11 353

•	 The process for Set Light Color is the same, except we will be setting an initial color

for the light. In both cases, it’s important to compile before saving the Blueprint

and to expose the values by enabling Instance Editable so they can be adjusted

from the editor.

In Figure 11.26, we can see the final programming structure of this Blueprint:

Figure 11.26 – Blueprint final assembly

With this simple programming, we can now modify the light’s intensity and color directly in the

editor, as shown in Figure 11.27:

Figure 11.27 – Blueprint in editor

Similarly, we could create logic to adjust other aspects of different components, such as changing

materials, textures, particles, and more. This approach provides flexibility for asset customization

within the editor, allowing for a more dynamic and efficient workflow.

Understanding Programming Logic and Blueprints354

In this exercise, we created a Blueprint of the Actor class and added various components, in-

cluding Static Mesh, Niagara Particle System Component, and Rect Light. We configured the

Rect Light component to allow adjustment of its intensity and color directly from the editor. By

creating references and using nodes such as Set Intensity and Set Light Color, we made these

properties editable. This setup enables easy manipulation of light properties and demonstrates

how to extend similar functionality to other component aspects such as materials and textures.

Creating a Blueprint from Actors in the level
In some cases, it can be simpler to compose elements directly from the level Viewport. This ap-

proach allows for positioning, scaling, and designing the arrangement of Actors in the scene as

desired.

Once the composition is finalized, it can be converted into a Blueprint, which is especially useful

when certain assets or compositions need to be repeated throughout a project. Doing this manu-

ally can become tedious and repetitive, so creating a Blueprint from the Actors already placed in

the level allows for easier reuse and centralized control, as well as the ability to program various

functions, as shown previously.

Here’s how to create a Blueprint from Actors in the level:

1.	 Select the assets in the level that you want to include in the Blueprint. You can do this

either from the Viewport or Outliner.

2.	 Go to the Blueprints menu in the toolbar and choose the Convert Selection to Blueprint

Class option, as shown in Figure 11.28:

Figure 11.28 – Convert selection to Blueprint

In the next exercise, we’ll learn how to create a Blueprint from the Actors already placed in a level.

Exercise 11.3: Creating a Blueprint from the Editor
Sometimes, it’s necessary to repeat certain assets or asset compositions throughout a project.

Doing this manually can become tedious and repetitive. A quick and useful solution is to create

a Blueprint from the Actors already placed in the level and convert the selection into Blueprints.

This allows for controlling and programming various functions as we’ve seen previously.

Chapter 11 355

Here’s how to create a Blueprint from Actors in the level:

1.	 Select the assets in the level that you want to include in the Blueprint. You can do this

either from the Viewport or the Outliner.

2.	 Go to the Blueprints menu in the toolbar and choose the option Convert Selection to

Blueprint Class, as shown in Figure 11.29:

Figure 11.29 - Convert selection to Blueprint

Upon selecting Convert Selection to Blueprint Class, a window will appear as shown

in Figure 11.30.

Figure 11.30 - Create Blueprint from Selection

Understanding Programming Logic and Blueprints356

In this window, you can choose how to create the Blueprint components:

•	 Child Actors: Creates a Blueprint with the selected assets as Child Actor Com-

ponents.

•	 Harvest Components: Creates a Blueprint with the selected assets as components.

3.	 For this exercise, we’ll use the Harvest Components method, as it simplifies modification

and programming of these components. Name the Blueprint (e.g., BP_SideWalk) and

select a path to save it within your project’s content. This process results in a Blueprint

composed of the selected assets in the level, making it easier to manage these elements

as a single entity in the Outliner, as shown in Figure 11.31:

Figure 11.31 - Blueprint in the level

From this point on, you can use the Blueprint as many times as needed to achieve the desired

design, allowing for quick repetition and iteration in the level. Once the Blueprint is created, it’s

easy to instantiate it multiple times in the level. In Figure 11.32, you can see the final result of this

process:

Chapter 11 357

Figure 11.32 - Final Level Assembly

In this exercise, we learned how to create a Blueprint from existing Actors in a level. By selecting

the desired assets and using the Convert Selection to Blueprint Class option, we can quickly

generate a Blueprint that combines these assets. We used the Harvest Components method to

include the assets as components within the Blueprint. This approach simplifies managing and

iterating on complex compositions, allowing for rapid duplication and adjustment in the level. The

final result demonstrates how efficiently we can apply and reuse these Blueprints in our projects.

With the Blueprint workflows complete, let’s turn our attention to maintaining and improving

them through effective debugging and optimization practices.

Debugging and optimizing Blueprints
Debugging and optimization ensure that your logic runs efficiently and predictably across different

scenarios. Small habits adopted early will save hours later in troubleshooting and performance

tuning.

Let’s have a look at some best practices:

•	 Print String for flow checks: Drop Print String at key branches to confirm execution

order and parameter values during tests.

•	 Breakpoints and stepping: Right-click an execution pin and select Add Breakpoint. Play

in the editor and step through to inspect values at runtime.

Understanding Programming Logic and Blueprints358

•	 Watch values: Right-click a data pin and select Watch this Value to see live updates while

your graph runs.

•	 Construction Script discipline: Keep heavy loops out of Construction Script. Use cached

results and expose only the Instance Editable variables you truly need to tweak in the

Details panel. (You already did this in Exercise 11.2: Creating Blueprints with components,

when exposing light controls.)

Next steps and Blueprint troubleshooting
Now, let’s move on to practical next steps and additional learning resources to continue improving

your Blueprint workflow.

•	 Blueprint essential concepts (Epic): This official documentation offers a concise path

if you’re new to visual scripting, ideally as a primer or refresher alongside this chapter’s

exercises: https://dev.epicgames.com/community/learning/courses/QGD/unreal-
engine-blueprint-essential-concepts/P7L/unreal-engine-introduction-to-

blueprint-essential-concepts.

•	 Sample projects: Explore Epic sample projects (for example, Lyra: https://dev.epicgames.

com/documentation/en-us/unreal-engine/lyra-sample-game-in-unreal-engine) to

see production-scale Blueprint patterns for input, UI, and gameplay scaffolding (great

for naming and folder conventions).

Here are some good practices you can adopt while working with Blueprints:

•	 Consistent naming: Use bIs… for Booleans, Max… for limits, Out… for output pins

•	 Keep graphs readable: Use comment boxes, Reroute nodes, and one responsibility per

function

•	 Create a Function Library: Start a Function Library for utilities you reuse across Blueprints

Troubleshooting Blueprint issues
Before wrapping up, here are answers to a few common issues you might encounter while work-

ing with Blueprints:

•	 I can’t find a node in the search.

•	 Enable Context Sensitive and drag from a compatible pin first; the palette then

filters valid actions for that type.

https://dev.epicgames.com/community/learning/courses/QGD/unreal-engine-blueprint-essential-concepts/P7L/unreal-engine-introduction-to-blueprint-essential-concepts
https://dev.epicgames.com/community/learning/courses/QGD/unreal-engine-blueprint-essential-concepts/P7L/unreal-engine-introduction-to-blueprint-essential-concepts
https://dev.epicgames.com/community/learning/courses/QGD/unreal-engine-blueprint-essential-concepts/P7L/unreal-engine-introduction-to-blueprint-essential-concepts
https://dev.epicgames.com/documentation/en-us/unreal-engine/lyra-sample-game-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/lyra-sample-game-in-unreal-engine

Chapter 11 359

•	 My Construction Script doesn’t affect gameplay.

•	 The Construction Script runs in the editor. Move runtime behavior to Event Graph,

using BeginPlay, Tick, or custom events.

•	 My placed instances don’t show up.

•	 Check Collision settings on the target mesh, the area bounds math (XY plane

versus Z), and confirm your loop’s Last Index ≥ First Index (see the Exercise

11.1 graph shown in Figure 11.17).

With these debugging and workflow practices in place, you now have a solid foundation for

building, testing, and optimizing Blueprints efficiently.

Summary
In this chapter, we covered essential concepts and practical applications of Blueprints in

UE5. We began with a basic understanding of Blueprint nodes, connections, and execution

flow, including variables, events, functions, and macros. We then explored different Blueprint

classes, such as Level Blueprint, Blueprint Class, Data-Only Blueprint, Blueprint Interface,

Blueprint Macro Library, and Blueprint Utilities, learning how to create and utilize each for var-

ious purposes.

Through practical exercises, we developed skills in creating Blueprints, including the following:

•	 Creating a Blueprint Class: We learned how to create and configure Blueprints, set vari-

ables, and use loops to distribute Static Meshes randomly in a scene.

•	 Creating Blueprints with components: We focused on adding and managing different

components such as Static Mesh, Niagara Particle System Component, and Rect Light,

learning how to modify component properties using references and expose them for

editing.

•	 Creating Blueprints from the Editor: We demonstrated how to convert existing level Ac-

tors into Blueprints, enabling easier management and replication of assets within the level.

In the next chapter, we’ll explore optimization and scene testing.

Understanding Programming Logic and Blueprints360

Subscribe to Game Dev Assembly Newsletter!
We are excited to introduce Game Dev Assembly, our brand-new newsletter dedicated to every-

thing game development. Whether you’re a programmer, designer, artist, animator, or studio lead,

you’ll get exclusive insights, industry trends, and expert tips to help you build better games and

grow your skills. Sign up today and become part of a growing community of creators, innovators,

and game changers.

https://packt.link/gamedev-newsletter

Scan the QR code to join instantly!

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

https://packt.link/gamedev-newsletter
http://packtpub.com/unlock

12
Optimizing and
Testing Your Scene

The creation of environments in Unreal Engine is primarily an artistic process. With planning and

development, we can build extensive and realistic scenarios as required by our main objective.

While artistry forms the foundation, technical understanding is just as important.

Throughout the development of each chapter, we have briefly provided tips and recommenda-

tions about specific aspects of the tools in use. Having explored the artistic side of world-building

in earlier chapters, it’s time to turn our attention to the technical layer that keeps those worlds

running smoothly.

In this chapter, we will discuss optimization as a global concept that should always be present

and can help us solve performance issues that arise in our projects. We will also address how to

add a character to our environment to traverse the scene and evaluate it. In open world environ-

ments, the sheer scale, density, and long viewing distances amplify every performance cost: more

objects in view, longer streaming paths, and heavier lighting and post-processing loads. Treat

optimization as a continuous design constraint rather than a late-stage patch.

When we talk about real-time rendering, it is important to understand that compromises must

be made during development to offset potential performance losses as assets are added to the

project. These include polygon counts in Static Meshes, texture resolution, collision handling,

and lighting complexity. Our goal should be to find a balance between the aspects of project

development. The fundamental aspects are performance, quality, and functionality. In this

kind of Vitruvian Triangle, there will always be trade-offs; we will always sacrifice one aspect to

gain another.

Optimizing and Testing Your Scene362

Key topics that we will cover in this chapter include the following:

•	 Things to consider before starting a project

•	 Understanding real-time rendering

•	 Understanding profiling

•	 Best practices

Technical requirements
To continue the development of this chapter, you’ll need a PC with Unreal Engine 5.5 (or a

later version) installed that meets the recommended requirements by Epic Games: https://
dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-

specifications-for-unreal-engine. Be sure to ensure you also have an active internet con-

nection.

Things to consider before starting a project
Before starting a project, it’s important to evaluate a few technical factors that will influence

performance and stability. Consider the following points:

•	 Before starting a project, it is advisable to establish minimum requirements to ensure the

project will be functional. Define the necessary framerate for the project to run correctly,

normally expressed in FPS.

•	 Define the workflow to achieve that framerate, that is, which engine features and tech-

nologies we need to consider to maintain it, such as ray tracing, Lumen, or texel density.

•	 Remember that every feature or asset added to the project has a performance cost, so

it is essential to ensure that whatever is added contributes meaningfully to the project.

•	 The target platform (Windows, Android, iOS, or game console) for which the project is

intended is another very important factor to consider from the beginning, as it directly

affects both the construction of the project and its optimization.

•	 Yet another important factor when optimizing a scene is the hardware on which it will run.

It is essential to be aware of the minimum specifications required, since optimization and

testing must be carried out based on those constraints. For this reason, the optimization

must always go hand in hand with testing to ensure performance remains stable.

Before diving into the rendering process, it is necessary to review some key concepts; let’s under-

stand them in the next section.

https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/hardware-and-software-specifications-for-unreal-engine

Chapter 12 363

Understanding real-time rendering
Unreal Engine is a real-time rendering engine, which means it must perform a large number

of calculations on every frame to draw the necessary pixels on screen. These calculations are

executed by both the CPU and GPU, each handling different parts of the rendering process in

synchronization.

There are two rendering methods in Unreal:

•	 Deferred rendering: Renders material attributes into the GBuffer first and applies lighting

in subsequent passes. It scales well with many dynamic lights and complex Materials,

which is why it’s the default for most content in this book.

•	 Forward rendering: Lights are evaluated during object rendering. It can offer lower over-

draw and Multisample Anti-Aliasing (MSAA) support, making it attractive for certain

stylized, VR, or mobile scenarios with limited light counts.

In this chapter, we will focus on deferred rendering, as it is the most widely used and performs

best for most types of content.

Understanding how meshes are drawn: vertices, triangles,
and pixels
Every 3D object in your scene is ultimately made of triangles. Each triangle is defined by three

points in space called vertices. A vertex stores information such as position, normal direction, UV

coordinates, and sometimes color or other per-vertex data.

When you see a high-poly mesh, what you are really seeing is “a mesh with a very high number of

triangles,” which also means a very high number of vertices. All those triangles stitched together

form the visible surface of the asset.

In real-time rendering, the GPU receives those vertices, transforms them into screen space (what

the camera sees), and then fills in, or rasterizes, the interior of each triangle into pixels. This is

what ultimately becomes the image on your screen.

Why does this matter for performance?

•	 The CPU is responsible for preparing and submitting what needs to be drawn, that is,

which objects are active, where they are, and whether they should be rendered this frame

•	 The GPU is responsible for taking the visible objects, processing their triangles, shading

their pixels, and compositing the final frame

Optimizing and Testing Your Scene364

If a mesh has millions of triangles, the GPU has to process and shade them. Systems such as Nanite

help by streaming and reducing triangle density intelligently, but the underlying cost is still tied

to how many triangles/pixels need to be drawn right now.

Here’s a handy mental model to keep in mind:

1.	 Vertices define triangles.

2.	 Triangles define the mesh.

3.	 The GPU shades the visible pixels of those triangles.

Understanding this chain makes it easier to interpret profiling data later in the chapter, especially

when we talk about GPU time, triangle cost, and shadow cost.

In the next section, we will explain in simplified terms how Unreal’s rendering process works

and how to identify performance bottlenecks within each stage.

Diving into the rendering process in Unreal Engine
Before beginning optimization, it is extremely useful to understand how Unreal’s rendering process

works. This allows us to identify where optimizations should be applied to improve performance.

A lack of optimization can be as detrimental as over-optimization; therefore, knowing exactly

where to optimize is essential for achieving the best possible balance between visual quality and

performance.

We can divide the rendering process into three threads, which reflect calculations performed by

both the CPU and the GPU:

•	 CPU: This is responsible for simulation and logic (animations, transforms, physics, AI,

spawning, and collisions)

•	 Draw (CPU): This is the command submission and visibility/occlusion work that prepares

what the GPU will render

•	 GPU: This executes the rendering: depth pre-pass, lighting, post-processing, and com-

position

We’ll explore these stages in detail in the Exploring the rendering workflow section.

To analyze how much time each stage consumes, Unreal provides real-time statistics. These help

us measure the CPU (Game), Draw, and GPU threads and quickly spot bottlenecks before we dive

deeper into the workflow.

Chapter 12 365

You can view these performance statistics directly in the editor using several statistics commands.

The most common are the following:

•	 stat unit

•	 stat fps

One of the simplest ways to activate stats in Unreal Engine is from the drop-down menu in the

top-right corner of the Viewport (eye icon | Viewport Stats | COMMON STATS), as shown in

Figure 12.1:

Figure 12.1 – Select stats

Optimizing and Testing Your Scene366

A summary of the selected stats should appear in the Viewport in the top-right corner, as shown

in Figure 12.2:

Figure 12.2 – Detail stats

We can also enable the stats through the following console commands, using the cvars (see

Figure 12.3):

•	 stat unit shows per-thread times (ms) for CPU, Draw, and GPU, plus the total frame

time, color-coded from green to red for quick triage.

•	 stat fps shows the current frames per second and frame time; use it to validate that your

ms breakdown aligns with the observed FPS.

Figure 12.3 – Command console

With real-time timings visible, let’s step through the rendering workflow to understand what

each thread is doing and where optimizations have the biggest impact.

Exploring the rendering workflow
Now that we can see the calculation times of our system, let us go back to understanding the

rendering process in Unreal Engine. The process consists of three stages (or frames), as illustrated

in Figure 12.4:

Chapter 12 367

Figure 12.4 – Render workflow

In the diagram shown in Figure 12.4, we can see the following threads:

•	 CPU

•	 DRAW (CPU)

•	 GPU

These three threads are synchronized but do not start at the same time. Each is responsible for

specific calculations so that by the end of the process, the corresponding frame is drawn.

Each stage of the process takes a certain amount of time (measured in milliseconds, or ms), which

defines the framerate (in FPS) at which the scene is rendered.

Unreal Engine must render in real time all the information required to draw the number of pixels

defined by the screen resolution. The higher the resolution, the more pixels need to be drawn in

the same time. This is why rendering at high resolutions requires significant CPU and GPU power.

For example, at 30 FPS, rendering a single frame would take 33 ms. This is known as latency, that

is, the time it takes to render one frame.

Let’s now break down each thread of the rendering process to understand these in more detail.

Optimizing and Testing Your Scene368

Frame 0
Before rendering, Unreal must know what and where to render. Since this is real time, elements

can constantly change position, so their location must be recalculated in every frame. This requires

a series of logical calculations for the scene:

•	 Animations: They determine where animated objects will move

•	 Object positions: They define where each object is located in the scene

•	 Physics: They identify which objects are affected by physics and calculate the types of

physics that apply to them

•	 AI: They calculate the behavior of AI to determine where AI-driven Actors will go or what

they will do

•	 Spawn, destroy, hide, unhide: The engine must determine which objects will be spawned,

destroyed, hidden, or unhidden

•	 Collisions: These checks identify how many collisions exist and the volume they occupy

All of these calculations must be processed by the CPU before rendering begins. The result is a

complete set of transformations for all objects in the scene, frame by frame.

In the Stat Unit, these calculations are represented by the value of the Game thread, as shown

in Figure 12.5:

Figure 12.5 – Game thread

Chapter 12 369

The values in the Stat Unit are expressed in milliseconds, which is a much more reliable mea-

surement for interpreting performance changes.

Thanks to the color coding of the values, we can quickly identify whether they are acceptable or

not, ranging from green to red.

Hence, with all these calculations, we are able to understand the behavior of the Actors in the scene.

Remember that a common source of performance issues comes from programming tasks and

Skeletal Meshes with their animations. These operations consume significant CPU resources

directly when building the scene. Developers should pay close attention to the Game thread, as

spikes here are often the first sign of performance problems.

Frame 1
At this stage, we now have the transformations of the objects, but not all of them need to be

rendered. We need to determine which objects should actually be rendered: those that will be

visible in the current frame.

This process occurs partly between the CPU and GPU, though the CPU carries the heavier load

of calculations.

To achieve this, Unreal begins an occlusion process, which creates a list of all visible objects. This

check is performed at the object level, not per triangle, so it reduces GPU overdraw by skipping

fully hidden Actors. However, each Actor still incurs a CPU/Draw thread visibility test, meaning

thousands of tiny objects can shift cost to the Draw thread.

Since this process is complex, Unreal uses four different systems to generate the list of visible

objects (distance culling, frustum culling, precomputed visibility, and occlusion culling). This

is one of the mixed solutions that works very well with the deferred renderer. Each system is ef-

fective at handling specific tasks, and they are executed in order of least to most performance cost.

Let’s look at each of these systems in order, starting with distance culling, the most straightfor-

ward and cost-effective approach.

Optimizing and Testing Your Scene370

Distance culling
Objects beyond a certain distance from the camera are not rendered. Each Actor has a parameter

that defines the minimum draw distance (Min Draw Distance), which can be found in the Actor’s

Details panel, under the LOD section, as shown in Figure 12.6:

Figure 12.6 – Min Draw Distance

 Note

The Desired Max Draw Distance parameter allows us to control the distance at

which an Actor will stop being rendered.

Chapter 12 371

Frustum culling
The frustum is a truncated pyramid (see Figure 12.7) that represents the camera’s field of view.

When an object enters this field of view, it is fully rendered. This culling is applied per object,

not per triangle.

Figure 12.7 – Frustum camera

Precomputed visibility
This method divides the scene into a grid, where each cell stores information about which objects

are visible from that position. These cells are generated during the lighting build process.

Occlusion culling
This method checks the visibility of each object from the camera’s point of view. It is the most

expensive process and depends on the Actor’s bounding volume. From the camera’s position,

Unreal must check each object in the scene to determine whether it is visible, partially visible, or

completely hidden behind another Actor or Static Mesh.

 Note

All Actors outside the frustum that do not intersect with it will not be calculated or

rendered in the frame.

Optimizing and Testing Your Scene372

By running all these processes for each frame, Unreal determines which objects are occluding

others, ensuring that only the necessary pixels are rendered.

In the Draw thread, we can see the time required to calculate scene occlusion, as shown in Figure

12.8:

Figure 12.8 – Draw thread

With all these calculations, we now know which objects are occluded in the scene.

The number of Actors and their size are the main aspects to consider when optimizing the Draw

thread. The more Actors present in the scene, the more occlusion checks Unreal will need to per-

form, increasing Draw time. In addition, Actor size matters: very large Actors are almost always

rendered, while smaller ones are more costly to process due to the higher number of occlusion

calculations required.

Frame 2
At this stage, we already know where the objects are and which ones are visible. Now begins the

most complex step: rendering those objects.

However, before starting the rendering itself, there is an additional problem to solve. We need a

pre-pass, because even though we know which objects to render and where they are, we do not

yet know the order in which they should be rendered—specifically, which objects are closer to

the camera than others.

The issue arises because Unreal renders objects one by one. If we render them without knowing

their distance from the camera, we will repeatedly generate pixels in the same location, over-

writing them with pixels that belong to only one object (due to occlusion between elements).

This wastes performance.

Chapter 12 373

To avoid this, a depth pass is created before rendering, which establishes the order of objects

relative to the camera. This ensures that pixels belonging to objects hidden by others are masked

and not rendered unnecessarily.

In essence, this process masks out the pixels that will not be visible, so only visible pixels are

rendered. Furthermore, this is the stage where all the rendering passes are generated, which are

then composited together to form the final image of the frame.

In the GPU Time thread, we can see the time it takes to draw the necessary pixels for the scene,

as shown in Figure 12.9:

Figure 12.9 – GPU Time thread

When GPU thread times spike, this is often caused by high-resolution textures in materials as

well as the resolution at which the scene is being rendered. These two aspects are key factors in

optimizing the scene.

Post-processing effects applied to the render are another major contributor to GPU time, along

with lighting and shadow calculations.

In open world environments, it is important to keep in mind that rendering large areas filled with

objects requires the GPU to perform heavy calculations, consuming significant milliseconds per

frame. For this reason, optimization in this thread is especially critical.

Draw calls
A draw call is a group of polygons that share the same properties—in other words, one object.

Once this stage begins, the GPU starts rendering. The rendering process is carried out draw call

by draw call.

Objects are rendered one by one into the GBuffer, which then combines the different images or

render passes to produce the final frame.

Optimizing and Testing Your Scene374

To visualize the GBuffer passes, go to View Mode in the top-right corner of the Viewport, then

select Buffer Visualization | Overview, as shown in Figure 12.10:

Figure 12.10 – Buffer Visualization menu

Chapter 12 375

When enabled, this will display a new version of the Viewport showing the buffers separated

from the final rendered image of the scene at that moment, updating in real time, as shown in

Figure 12.11:

Figure 12.11 – Passes in the GBuffer and image composed

Draw calls have a significant impact on performance. In fact, now, the number of draw calls has a

greater impact than the number of triangles. Reducing draw calls does not necessarily mean re-

ducing scene quality. There are ways to optimize draw calls while still maintaining visual fidelity:

•	 Merge nearby Actors (Tools | Merge Actors) and, when safe, merge Materials to cut sub-

mission overhead

•	 Prefer Instanced Static Meshes/Hierarchical Instanced Static Mesh (ISMs/HISM) for

repeated props instead of many unique Actors

•	 Use Material atlases and channel packing (R/G/B/A) to consolidate textures

•	 Cull small set dressing aggressively and rely on HLOD or World Partition proxies for dis-

tant clusters

Optimizing and Testing Your Scene376

The number of draw calls can be monitored in the Stat Unit, as shown in Figure 12.12:

Figure 12.12 – Draw calls counter

The number of draw calls generated by an Actor is related to its materials, geometry, and lighting.

With Unreal Engine’s stats on screen and a clear grasp of the Game thread and draw calls, it’s

time to interpret the numbers and run our first profiling pass.

Understanding profiling
Profiling consists of measuring the time it takes the engine to complete a task, function, or group

of functions. Once we know which thread is losing performance, it is time to investigate which

parts of the scene are causing the times to spike and how we can solve these issues.

To do this, we begin profiling using the tools that Unreal provides to help identify what are known

as bottlenecks.

Bottlenecks occur when the flow of information between the CPU and GPU is not continuous or

homogeneous, which can cause slowdowns in data input and output. To detect these bottlenecks,

different tools can be used. We have already learned how to use the Stat Unit to identify where

performance is being lost.

Now we will explore other tools, such as visualization modes, which allow us to analyze how

much it costs the engine to render different elements of the scene and, in turn, help us identify

where optimization should begin.

 Note

Nanite geometries do not count as draw calls, but their materials do. This is an im-

portant detail to keep in mind.

Chapter 12 377

Within the visualization modes, we have several types designed to identify performance issues

in specific aspects of the scene, such as Materials and lighting.

Under View Modes, Unreal provides a suite of tools for review and diagnosis. Figure 12.13 shows

how to access Optimization Viewmodes:

Figure 12.13 – View Modes

Optimizing and Testing Your Scene378

Among the options included in Optimization Viewmodes, we’ll have a look at some of the most

useful ones:

•	 Light Complexity: This mode allows us to visualize the number of dynamic lights in the

scene and the overlap of their influence radii, which leads to increased complexity in

real-time lighting calculations. The warmer the color, the more overlapping lights are

present.

Figure 12.14 – Light Complexity mode

•	 Shader Complexity: This mode allows us to see the processing cost of each shader. The

more red or white an area appears, the more instructions that shader is processing. It is

best to avoid large white or red areas.

Chapter 12 379

Figure 12.15 – Shader Complexity mode

In our case, using these modes allowed us to identify where the highest number of calculations

related to lighting and Materials were occurring within this part of the project.

There are also more advanced tools available to identify where high computational costs may be

taking place within the scene. These tools can be divided into two categories: GPU Visualizer and

Statistics, which collect information from a captured frame and provide a detailed breakdown

of how the frame was rendered.

Working with the GPU Visualizer
The GPU Visualizer captures information from a frame on the GPU to identify the processes taking

place during that frame and the time each consumes.

Optimizing and Testing Your Scene380

Since it provides information on what is being rendered by the engine, the best way to obtain

realistic data is to capture it at the final resolution. To do this, do the following:

1.	 Go to Editor Preferences | Level Editor | Play | Game Viewport Settings.

2.	 In New Viewport Resolution, set the resolution you want. This way, the capture will be

made at the selected resolution.

To open the GPU Visualizer, there are two methods. You can do either of the following:

•	 Press Ctrl + Shift + ,

•	 Type profileGPU in the console

When the capture completes correctly, you’ll see the GPU Visualizer window, illustrated in Figure

12.16:

Figure 12.16 – GPU Visualizer

Chapter 12 381

Inside the GPU Visualizer, two sections provide similar information but displayed in different ways.

At the top, there is a visual representation with bars, where each bar represents a process and the

proportion of time it takes within the frame calculation:

Figure 12.17 – GPU Visualizer detail

In the example shown in Figure 12.18, we can see that shadows take up the largest proportion of

the frame’s processing time, at 15.08 ms:

Figure 12.18 – GPU Visualizer detail

 Note

UI numbers may appear with comma separators depending on the OS locale.

Optimizing and Testing Your Scene382

Here, we see that virtual shadows from Nanite meshes consume 14.95 ms of the total frame. With

this information, we know that we need to start optimizing this part of the scene. In this case,

the issue comes from the shadows generated by the landscape vegetation, as shown in Figure

12.19 for your reference:

Figure 12.19 – Landscape detail

Although they are Nanite meshes, the large number of them generates a considerable number

of shadows.

To minimize this cost, several strategies can be applied:

•	 Reducing the number of plants: In this case, they are foliage-painted/material-driven

spawning, so it is necessary to adjust density in the corresponding Foliage Actor

•	 Scaling up meshes slightly: This way, they cover more space, reducing the total number

needed

•	 Caching shadows: This is so that they are not recalculated constantly, for example, by

baking the lighting and setting it to static

It is important to keep in mind that although Nanite allows us to work with very high poly meshes,

it can introduce other performance issues, such as shadow calculations or material count.

Chapter 12 383

When using Nanite meshes, it is recommended to enable Virtual Shadow Maps as the shadow

mapping method to make shadow calculations more efficient.

To collect actionable performance data on scene assets, we’ll begin with Unreal’s Statistics tool,

covered in the next section.

Auditing with Statistics and Resource Usage
To open Statistics, go to Tools | Audit | Statistics, which will display a window as shown in

Figure 12.20:

Figure 12.20 – Statistics tool

The Statistics window presents a sortable table of level assets grouped by type (Static Meshes,

Skeletal Meshes, materials, textures, etc.). Each group lists per-asset metrics, such as triangles/

vertices, material slots, LOD count, approximate resource size (memory), and instance count at

the current level. You can filter, search, and sort columns to surface outliers quickly.

Optimizing and Testing Your Scene384

Using Resource Usage
This option provides a list of the assets used in the project, organized by categories and expressed

as the total number of elements and their resource consumption.

To open Resource Usage, go to Tools | Audit | Resource Usage, which will display the following

window:

Figure 12.21 – Resource Usage tool

Resource Usage provides a high-level breakdown of your project’s memory footprint, grouped

by asset category (Texture, MaterialShader, StaticMesh, NiagaraScript, Audio, etc.), so you

can see how much CPU RAM and GPU VRAM each group and individual assets consume. It lists

per-asset “resource size” (including mip levels for textures, buffer sizes for meshes, and compiled

shader memory for Materials), along with references and usage counts, letting you sort to find

the top offenders quickly.

With the biggest memory offenders flagged in Resource Usage, the next step is to act. In the next

section, we’ll turn those findings into concrete fixes.

Chapter 12 385

Best practices
Once we have identified the aspects of the project that may be causing performance losses, we

must apply the necessary modifications to improve overall performance. In this section, we’ll roll

up our sleeves and improve performance holistically, tackling geometry, LODs, and materials so

every change we make reduces draw cost, balances GPU time, and keeps memory within budget.

Geometry
If we have too many assets visible on screen, the time spent in the Draw thread will increase. We

can optimize this in several ways:

•	 Convert Static Meshes to Nanite to minimize triangle calculations

•	 Merge meshes to reduce the total number of Actors in the scene

To merge Actors, use the dedicated tool. First, select the Actors you want to merge, then go to

Tools | Merge Actors, as shown in Figure 12.22:

Figure 12.22 – Merge Actors

Optimizing and Testing Your Scene386

With the Merge Actors tool, we can combine Static Meshes and even their materials, giving us

great flexibility when managing geometry.

To avoid occlusion problems, it is important to follow certain rules when merging geometries:

•	 Merge Actors that are close to each other, since merged meshes generate new bounds that

encompass the combined volume and may affect occlusion

•	 Avoid merging very large objects, as these will always be rendered once on screen, which

negatively impacts occlusion

If materials are merged, it is possible to define which texture maps should be merged, as well as

their resolution. Keep in mind that texture resolutions will be reduced when combining several

maps into a single one.

LODs
Continuing with geometry, we can use LODs to improve performance in non-Nanite Static Meshes

(Nanite meshes already include their own internal LOD system).

LODs are simplified versions of the original meshes with a reduced triangle count. Unreal Engine

swaps these meshes depending on the camera’s distance: low-poly versions are used when the

object is far away, and higher-poly versions when the camera is closer.

In open worlds, long sightlines and streaming make LODs vital. Pair per-mesh LODs with HLODs

from World Partition, so distant areas collapse into lightweight proxies, cutting draw calls and

overdraw. Set LOD distances by asset type (foliage versus architecture), use dithered transitions if

needed, and strip shadows or complex materials on lower LODs to keep far content cheap while

close-up detail stays sharp.

Generating LODs
LODs can be generated manually or automatically, either in Unreal or in external software. Let’s

examine both processes.

In Unreal, to automatically generate LODs, open the Static Mesh Editor (double-click the Actor

in the Content Browser).

In the Details panel, under LOD Settings, you will find the following options (see Figure 12.23):

•	 Number of LODs: This defines how many LOD levels will be created

•	 Auto Compute LOD Distance: Disable this option to manually control distances

Chapter 12 387

•	 Apply Changes: This generates the LODs. The distances at which LODs are displayed are

defined automatically, but can be adjusted

•	 Screen Size: This defines the camera distance (based on percentage of screen coverage)

at which each LOD is displayed

Figure 12.23 – LODs

Now, let’s move on to how we can create LODs manually. There are two ways to create LODs

manually:

•	 Import LOD meshes: After generating LODs automatically, use LOD Import to assign a

specific mesh to each LOD slot

•	 Reduction settings (per LOD): Control the triangle count of each mesh, defining the

geometric density for each LOD level

Optimizing and Testing Your Scene388

Textures
When creating a Master Material, it is common to use specific textures tied to that material.

These textures are loaded into memory even if the material is not applied to any object in the

scene. They are also loaded into memory even if Material Instances do not use them.

The best way to avoid this is to use a series of simple, low-resolution textures to minimize mem-

ory usage:

Figure 12.24 – Textures for Master Material

It is very important to use power-of-two textures whenever possible, because non-power-of-two

textures have two drawbacks:

•	 Will not have mipmaps, which can cause moiré and flickering effects

•	 Will take up more memory space

The compression format of textures is also very important, as it directly affects both the visual

quality and the memory footprint.

Take the following examples:

•	 DXT1 Texture:

•	 512x512 | 171 kB

•	 1024x1024 | 683 kB

•	 ARGB8 Texture:

•	 511x513 | 1,024 kB

•	 1023x1025 | 4,096 kB

Chapter 12 389

There are two major types of texture compression:

•	 Default: This is block compression (4–8 bpp) that greatly cuts VRAM and bandwidth. It

is good for color maps (albedo, ORM).

•	 Trade-off: Blocky/banding artifacts on gradients or UI.

•	 Grayscale compression: This single-channel compression (4 bpp) is ideal for masks/

height maps. It reduces memory versus storing the same data in RGBA.

•	 Trade-off: One channel only; use channel packing (multiple masks in RGBA) if

you need to minimize samplers rather than pure memory.

Figure 12.25 – Textures compression

Now that we’ve explored optimization strategies for geometry, LODs, and textures, let’s see how

these principles apply in practice by analyzing a scene.

Example: Scene analysis
Nanite is a geometry virtualization system that allows us to have a large number of meshes

with very high triangle counts in a scene. However, they still affect performance in areas such as

lighting and materials.

Because of this, care must be taken when using Nanite, especially when adding assets through

the Foliage tool. While foliage placement is optimized by the tool, if those assets are also Nanite

meshes, we could easily end up with very large amounts of geometry. The engine will then need to

calculate, for example, the shadows cast by those assets, which can consume a significant portion

of the frame’s render time—even when using Virtual Shadow Maps as the shadowing method.

Optimizing and Testing Your Scene390

In the scene we are optimizing, we observed high calculation times in the following threads:

•	 Draw: 35.57 ms

•	 GPU: 35.16 ms

Additionally, the GPU Visualizer showed that ShadowDepths consumes the largest portion of

render time, with 15.08 ms. Out of this, 14.95 ms are spent calculating the Virtual Shadow Maps

of the Nanite assets in the scene:

Figure 12.26 – Virtual Shadow Maps render time

In this scenario, there are several possible solutions to reduce per-frame render times:

•	 Reduce the number of Nanite assets: For example, by removing assets with the Erase

tool in Foliage mode.

Figure 12.27 – Erase tool

Chapter 12 391

•	 Scale the assets: This is so that they cover more space, allowing us to use fewer instances

while achieving the same effect. This can be adjusted in Foliage mode as follows:

1.	 Select the asset.

2.	 Go to Painting | Scale X.

Figure 12.28 – Scale Foliage

•	 Disable Nanite: Disabling Nanite for the Static Meshes used in foliage allows us to control

LODs. This way, we can define which LODs cast shadows, minimizing shadow calculations

when those LODs are loaded. Follow these steps:

3.	 Open the Static Mesh Editor | Details.

4.	 Go to the LOD settings (usually the lowest LODs, i.e., least detailed).

5.	 Disable Cast Shadow.

Figure 12.29 – LOD Cast Shadow

After reducing part of the foliage and scaling the remaining assets, we achieved significantly

better performance metrics compared to the initial state. This was done without any noticeable

loss in visual quality, as shown in Figure 12.30:

Figure 12.30 – Stat Unit of the optimized scene

Optimizing and Testing Your Scene392

Figure 12.31 shows the optimized foliage layout, demonstrating how performance improvements

were achieved without compromising visual fidelity:

Figure 12.31 – Scene detail

Along the way, we’ve touched on many concepts you should already recognize, and taken together,

they span the entire Unreal Engine workflow. Optimization is therefore an integral part of level

development. By understanding how the engine works and consistently applying best practices,

you can ship more complex projects without sacrificing performance.

Summary
Throughout this book, we have explored the artistic and technical aspects of building open worlds

in Unreal Engine. In this final chapter, we have focused on ensuring that environments not only

look good but also perform well and play correctly.

This chapter highlighted optimization as a key principle in real-time rendering. We examined

the rendering pipeline (CPU, Draw, and GPU threads) and how to measure performance using

Unreal’s profiling tools.

The key topics included understanding the rendering workflow and identifying bottlenecks;

managing draw calls, LODs, Nanite meshes, and foliage density; and profiling with the Stat Unit,

GPU Visualizer, and Optimization Viewmodes. We rounded it off with best practices for geometry,

textures, shadows, and memory usage.

Chapter 12 393

So, before calling an area “optimized,” run a quick scene analysis in the play context. Note any stalls

on the Game thread tied to AI, animation, or overlap events, then reprofile at target resolution.

This ties performance findings to real player interaction, not just synthetic timings.

Optimization and testing are not isolated tasks but ongoing processes that must be revisited

throughout development. By combining technical profiling with practical gameplay validation,

you will be able to deliver worlds that are not only visually stunning but also stable, efficient,

and enjoyable to explore.

The journey ahead
This completes our journey through the creation of open world landscapes in Unreal Engine:

from the artistic foundation of world-building, through technical optimization, to final gameplay

validation. With these tools and practices, you are now equipped to create expansive, performant,

and immersive worlds ready for players.

Any story, game, or cinematic requires a world in which to exist, so there are infinite possibilities

of what we can develop. Take each of those possibilities as an opportunity to capture the spark

you carry inside and turn it into a world others can step into!

Subscribe to Game Dev Assembly Newsletter!
We are excited to introduce Game Dev Assembly, our brand-new newsletter dedicated to every-

thing game development. Whether you’re a programmer, designer, artist, animator, or studio lead,

you’ll get exclusive insights, industry trends, and expert tips to help you build better games and

grow your skills. Sign up today and become part of a growing community of creators, innovators,

and game changers.

https://packt.link/gamedev-newsletter

Scan the QR code to join instantly!

https://packt.link/gamedev-newsletter

Optimizing and Testing Your Scene394

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

13
Unlock Your Exclusive Benefits

Your copy of this book includes the following exclusive benefits:

•	 Next-gen Packt Reader

•	 DRM-free PDF/ePub downloads

Follow the guide below to unlock them. The process takes only a few minutes and needs to be

completed once.

Unlock this Book’s Free Benefits in 3 Easy Steps
Step 1
Keep your purchase invoice ready for Step 3. If you have a physical copy, scan it using your phone

and save it as a PDF, JPG, or PNG.

For more help on finding your invoice, visit https://www.packtpub.com/unlock-benefits/help.

Note: If you bought this book directly from Packt, no invoice is required. After Step

2, you can access your exclusive content right away.

https://www.packtpub.com/unlock-benefits/help

Unlock Your Exclusive Benefits396

On the page that opens (similar to Figure 13.1 on desktop), search for this book by name and select

the correct edition.

Figure 13.1: Packt unlock landing page on desktop

Step 2
Scan the QR code or go to packtpub.com/unlock.

http://packtpub.com/unlock

Chapter 13 397

Step 3
After selecting your book, sign in to your Packt account or create one for free. Then upload your

invoice (PDF, PNG, or JPG, up to 10 MB). Follow the on-screen instructions to finish the process.

Need help?
If you get stuck and need help, visit https://www.packtpub.com/

unlock-benefits/help for a detailed FAQ on how to find your

invoices and more. This QR code will take you to the help page.

Note: If you are still facing issues, reach out to customercare@packt.com.

https://www.packtpub.com/unlock-benefits/help
https://www.packtpub.com/unlock-benefits/help
mailto:customercare@packt.com

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://www.packtpub.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Unreal Engine 5 Character Creation, Animation, and Cinematics

Henk Venter, Wilhelm Ogterop

ISBN: 978-1-80181-244-3

•	 Create, customize, and use a MetaHuman in a cinematic scene in UE5

•	 Model and texture custom 3D assets for your movie using Blender and Quixel Mixer

•	 Use Nanite with Quixel Megascans assets to build 3D movie sets

•	 Rig and animate characters and 3D assets inside UE5 using Control Rig tools

•	 Combine your 3D assets in Sequencer, include the final effects, and render out a high-qual-

ity movie scene

•	 Light your 3D movie set using Lumen lighting in UE5

https://www.packtpub.com/en-us/product/unreal-engine-5-character-creation-animation-and-cinematics-9781801819480

Other Books You May Enjoy402

Blueprints Visual Scripting for Unreal Engine 5, Third Edition

Marcos Romero, Brenden Sewell

ISBN: 978-1-80181-158-3

•	 Understand programming concepts in Blueprints

•	 Create prototypes and iterate new game mechanics rapidly

•	 Build user interface elements and interactive menus

•	 Use advanced Blueprint nodes to manage the complexity of a game

•	 Explore all the features of the Blueprint editor, such as the Components tab, Viewport,

and Event Graph

•	 Get to grips with OOP concepts and explore the Gameplay Framework

•	 Work with virtual reality development in UE Blueprint

•	 Implement procedural generation and create a product configurator

https://www.packtpub.com/en-us/product/blueprints-visual-scripting-for-unreal-engine-5-9781801818698

Other Books You May Enjoy 403

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packt.com and apply

today. We have worked with thousands of developers and tech professionals, just like you, to

help them share their insight with the global tech community. You can make a general applica-

tion, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Building Open World Landscapes with Unreal Engine 5, we’d love to hear your

thoughts! If you purchased the book from Amazon, please click here to go straight to the Am-

azon review page for this book and share your feedback or leave a review on the site that you

purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packt.com
https://packt.link/r/1835085571
https://packt.link/r/1835085571

Index

Symbols
3D asset

adding, from Quixel Bridge
to Unreal Engine 55, 56

A
Academy Color Encoding

System (ACES) 316, 317
Actor Foliage 200
ALEMBIC (ABC) 67
Allar Style Guide

assets, naming 109-111
characters, allowing 108
content directory structure 111-114
exploring 108

All tool 214
Ambient Occlusion 244
Art Direction 289
ArtStation 30

augmented reality (AR) 11

B
Base Color 242
basic geometric models 171
Binary GLTF (GLB) 65
Binary Space Partition (BSP) 7
blank project

creating 172-175
blockout 170, 171
Blueprint class 333

creating 334
hierarchy 335, 336

Blueprint Interface 334

Blueprint Macro Library 334
Blueprints 6, 138, 331

debugging 357
FAQs 358
interface, exploring 337, 338
mini-FAQ 358
optimizing 357
programming concepts 332
system 331

Blueprints, components
Actor class Blueprint, creating 349-351
creating 349
reference, creating 351-354

Index406

Blueprint, types
Blueprint class 333
Blueprint Interface 334
Blueprint Macro Library 334
Blueprint Utility 334
Data-Only Blueprint 334
exploring 333
Level Blueprint 333

Blueprint Utility 334
Blueprint Visual Scripting system 6
bottlenecks 376
bottom toolbar 19

distinct sections 20
Brush tool 200

C
C++ code 138
Collaborative Design Activity (COLLADA) 66
Collision 76, 77
color adjustment

in outdoor scene 323-326
color grading

workflow 320, 321
Color Grading section 314-316
compression format 388
connections 332
Content Browser 18

features 19
Content Browser, in Unreal Engine 48, 49

Material 51
material instancing 52
Static Mesh Actor 50
Textures 53, 54

content directory structure 116
Cull Distance 200
custom landscape

creating 192, 193

D
Data Layers 154-156
Data-Only Blueprint 334
data wires 332
deferred rendering 363
density 200
depth pass 373
Deselect tool 213
Desired Max Draw Distance parameter 370
Details panel 22-24

functions 24
digital content creation (DCC) 6
DirectionalLight 278

Light properties 278
Light Shafts 279, 280

distance culling 369, 370
distributed version control

system (DVCS) 119
draw call 373-375
Dynamic global illumination (DGI) 274
dynamic texture blending 84

E
Editor Blueprint

creating 354-356
End User License Agreement (EULA) 34
environment creation 169

blockout process 170-172
fully modeled environment 169

Index 407

landscape tools 170
method, selecting 169

Environment Light Mixer
DirectionalLight 278
ExponentialHeightFog 292-294
SkyAtmosphere 283
SkyLight 281
using 276, 277
VolumetricCloud 294, 295

environment modeling 169
Erase tool 211
execution wires 332
existing landscape

deleting 176, 177
ExponentialHeightFog 292-294
expressions 229

F
Fab 27, 31, 32

assets, acquiring 32, 33
assets, discovering 32, 33
assets, searching 32, 33
downloads 35
licensing 33, 34
My Library 35
product pages 33, 34
purchasing 33, 34
using, with Unreal Engine 36, 37

FBX import options 72-74
Collision 76, 77
Level of Detail (LOD) optimization 77, 78
Mesh settings 78
Static Mesh, versus Skeletal Mesh 74

file preparation
best practices 68
mesh topology, optimizing 68

texture baking 69
UV unwrapping 69

Fill tool 216
Filmbox Format (FBX) 65

importing, as Skeletal Meshes 94-99
Film Grain effect 318, 319

properties 318
Film section 316
Foliage Mode

enabling 201-208
Foliage tools

All 214
Deselect 213
Erase 211
Fill 216
Lasso 212
Paint 208-210
Reapply 217-219
Remove 213
Select 213
Single 215
using 208

forward rendering 363
Frame 1, real-time rendering

distance culling 370
frustum culling 371
occlusion culling 371, 372

frustum culling 369-371
fully modeled environment 169

G
geometry 385, 386
GitHub Desktop help

reference link 127
global illumination (GI) 274

Index408

Global Illumination section 317, 318
methods 317

GPU Visualizer
working with 379-382

Graphics Library Transmission
Format (GLTF) 65

graybox Level 170

H
heads-up display (HUD) 53
heightmaps

terrain, creating 188-190
Helix Core 119
Hierarchical LOD (HLOD) 85
Hierarchical Instanced Static

Mesh (HISM) 375
high dynamic range (HDR) 320
High-Level Shading Language (HLSL) 228
high-poly mesh 363
HLOD layer asset 157

types 158
working with 158, 159

HLOD system
HLOD layer asset, creating 157
implementing, in World Partition 157

I
Import Options parameters 72

Materials 78
Mesh and Transform 72

Instanced Static Mesh (ISM) 158, 375

L
Landscape Components 181
Landscape tools

details panel 180
Landscape Components 181-184
Manage tools 179, 180
using 177-179

Lasso tool 212
latency 367
layers

creating 144, 145
using 144
working with 146, 147

Lens section 309-314
Level Blueprint 333
level design 168
Level Details 140
Level Editor 27
Level Instancing 157
level management approach 164

core layers of level management 164
workflow, selecting 165

Level of Detail (LOD) 63, 77, 115, 158
generating 386, 387

level operations 138-140
levels 132

creating 133, 134
managing 136, 137
opening 136
saving 136
working with 132

Index 409

Level streaming, options 141
Always Loaded 141
Blueprints 141
Level Streaming Volumes 142

Level Streaming Volumes 138-142
editor previews 142
in-game behavior 142

level systems
creating 160
levels and sublevels, setting up 160
levels, loading with Level Streaming

Volumes 160-164
levels, unloading with Level Streaming

Volumes 160-164
Level Viewport 16

functionalities 17, 18
level visibility 140
Light Complexity 378
lighting scenarios

exploring 142
key aspects 143

Lightmass 222
light mobility 272-274

key features 274
LOD Groups 78
Lumen 272-274

advanced techniques 275
advantages 275
exploring 275
real-time rendering, enhancing 296-298

M
main node 229
main toolbar

key features 15, 16
material assignment 81, 82

material attributes 51
Material Editor

Float 239
Float2 239
Float3 239
Float4 240, 241
working 239

Material Editor, interface
Details panel 236
exploring 229-231
Graph 232
Palette 233
Stats 238
Toolbar 236-238
Viewport 234, 235

Material Editor, workflows 251
landscape material expression,

implementing 258-265
landspace material expressions 253, 254
landspaces, texturing 252
Material Instances 251, 252
vegetation, generating from landscape

material 255-257
Material Expressions 229
Material Instances 251, 252
material modification 82, 83
material performance

material adjustments, for environmental
conditions 84

visual quality, balancing 84
materials 51, 78, 227
materials instancing 52
Megascans assets

importing 46-48
integrating 46-48
methods 46

Index410

Megascans library 27
menu bar

functions overview 14
Merge Actors tool 386
mesh batching 85
Mesh settings 78
mesh topology

optimizing 68
Metallic property 242
Mie scattering 286-288
mipmaps 247
Multisample Anti-Aliasing (MSAA) 363
My Library tab 35

N
Nanite 61, 272, 389

real-time rendering, enhancing 296-298
Niagara 115
nodes 332
non-player characters (NPCs) 6
Normal input 244

O
Object File (OBJ) 65
object-oriented programming (OOP) 336
occlusion culling 369-372
occlusion process 369
One File Per Actor (OFPA) 147
One File Per Actor strategy 159, 160

benefits 159, 160
Optimization Viewmodes

Light Complexity 378
Shader Complexity 378

Outliner panel 20
functionalities 21

P
Paint tool 208-210
PBR materials

Ambient Occlusion 244
Base Color 242
creating, for gold material 245
Metallic property 242
Normal input 244
overview 241
Roughness 243
Specular 243

Persistent Level 138
Physically-Based Rendering (PBR) 229
pixels 363
planetary atmospheres 290, 291
plastic SCM 119
polygon count 220
Post Process Volume (PPV) 301

Color Grading section 314-316
exploring, in Unreal Engine 302-304
features 308
Film Grain effect 318, 319
Film section 316, 317
frame-rate considerations 322
Global Illumination section 317, 318
Lens section 309-314
mental model, using 322
need for 304, 305
overlapping and blending,

best practices 320
performance 322
properties 305-307
testing 322

Index 411

precomputed visibility 369
pre-pass 372
profiling 376
programming concepts

connections 332, 333
Nodes 332
with Blueprints 332

project structure and naming convention
advantages 104
Allar Style Guide, exploring 108-114
collaboration, enhancing 106, 107
examples 108
order and clarity, maintaining 105, 106
protocols, applying 122, 123
scalability and maintenance, facilitating 107

Q
Quixel 29
Quixel Bridge 38

asset configuration, significance 60, 61
content, browsing 41, 42
enabling, for Unreal Engine 38, 39
launching, in Unreal Engine 39, 40
using, in Unreal Engine 40

Quixel Bridge, content
asset 42, 43
download settings 43, 44
export settings 45, 46
resolution 44, 45

Quixel Bridge plugin 27
Quixel Bridge, to Unreal Engine

3D asset, adding from 55, 56
Quixel Megascans library 167

R
Rayleigh scattering 284-286
real-time rendering 363

deferred rendering 363
enhancing, with Lumen 296-298
enhancing, with Nanite 296-298
enhancing, with Virtual

Shadow Maps 296-298
forward rendering 363
meshes 363, 364
process 364-366
workflow 366, 367

real-time rendering, workflow
draw call 373-376
Frame 0 368, 369
Frame 1 369
Frame 2 372, 373

Reapply tool 217- 219
reference 351
Remove tool 213
Resource Usage

using 384
revision control tools

features 117
Roughness 243

S
scene analysis 389-392
scene development

inspiration and references 168
Sculpt tools

using 184-187
Select tool 213

Index412

Shader Complexity 378
Shader Model 6 (SM6) 5
shader morphing 84
shaders and rendering process 228
Single tool 215
Skeletal Mesh 74
Sketchfab 30-86

reference link 86
SkyAtmosphere 283

Art Direction 289
key features 283
Mie scattering 286-288
planetary atmospheres 290, 291
Rayleigh scattering 284-286

SkyLight 280
Movable SkyLight 281
Real Time Capture 282

source control 117
Sourcetree help

reference link 127
Specular 243
Static Mesh 74, 115

Actor class Blueprint, creating 338
FBX file, downloading from Sketchfab 86-88
FBX file, importing into

Unreal Engine 89-93
importing 69-72, 86
import process 79
import process, troubleshooting 79, 80
material, selecting and applying to 57-59
nodes, adding 339-342
optimization, need for 85
optimization strategies 85, 86
optimization techniques 84
tool, developing for randomly placing 338

transform, controlling 346-348
variables, adding 342-345
versus Skeletal Mesh 74-76

Static Mesh Actor 50
Static Mesh Foliage 200
Static Mesh Foliage optimization 220, 221

lighting 222
textures 222-224

Static Mesh format 64
Binary GLTF (GLB) 65
Filmbox Format (FBX) 65
format selection 67, 68
format selection, need for 66
Graphics Library Transmission

Format (GLTF) 65
in Unreal Engine 65
Object File (OBJ) 65
other formats 66
Universal Scene Description (USD) 65

Statistics 379
auditing with 383

Stereolithography (STL) 66
sublevels 138
subversion (SVN) 118

T
terrain

creating, from heightmaps 188-190
sculpting 193-197
troubleshooting 190, 191

texture atlasing 85
texture baking 69
texture compression types

block compression 389
single-channel compression 389

Index 413

texture implementation 246
formats and resolution 247, 248
working, in Material Editor 248-250

textures 53, 54, 115, 116, 388, 389
section 54

tonemapping 320
workflow 320, 321

triangles 363

U
UE5 rendering features

advanced rendering features 5
hardware requirements 5

Universal Scene Description (USD) 65
Unreal Editor for Fortnite (UEFN) 31
Unreal Engine

assets and resources, creating and
importing guidelines 115-117

installing 8, 9
project and templates, setting up 10-13
Quixel Bridge, enabling 38, 39
Quixel Bridge, launching in 39, 40
Quixel Bridge, using for 40
reference link 8
revision control options 117-120
revision control tools 117
revision control tools, using 123-127
source control, best practices 121
terminology, learning 6, 7
used, for using Fab 36, 37

Unreal Engine 5 (UE5) 3, 27, 170
Unreal Engine, ecosystem

acquisitions 29
ArtStation 30
evolution 29

Quixel 29
Sketchfab 30, 31
Unreal Engine Marketplace 29

Unreal Engine, interface
bottom toolbar 19
Content Browser 18
Details panel 22-24
exploring 13
Level Viewport 16
main toolbar 15
menu bar 14
Outliner panel 20

Unreal Engine lighting 272
key purposes 272
light mobility 272- 274
Lumen, exploring 274, 275

Unreal Engine Marketplace 29
UV unwrapping 69

V
version control 117
version control systems (VCSs) 107
vertex 363
vertices 363
virtual reality (VR) 11
Virtual Shadow Maps

real-time rendering, enhancing 296-298
Virtual Shadow Maps (VSMs) 296
visualization modes 376
VolumetricCloud 294, 295

Index414

W
World Partition 131, 147

components 153
Data Layers 154-156
enabling 148
functionalities 153
HLOD system 157
Level Instancing 157

loading regions 151-153
methods 148
One File Per Actor strategy 159, 160
runtime grid settings 150
streaming sources 149
unloading regions 151-153
using 149
working with 148

	Title Page
	Copyright and Credits
	Foreword
	Contributors
	Table of Contents
	Preface
	Free Benefits with Your Book

	Part 1: Setting Up Your Scene in Unreal Engine
	Chapter 1: Starting a Project in Unreal Engine
	Technical requirements
	Special hardware requirements for UE5 rendering features
	Other rendering features

	Learning the Unreal Engine terminology
	Installing Unreal Engine
	Setting up the project and templates
	Exploring the Unreal Engine interface
	Menu bar [1]
	Main toolbar [2]
	Level Viewport [3]
	Content Browser [4]
	Bottom toolbar [5]
	Outliner [6]
	Details panel [7]

	Summary

	Chapter 2: Quixel Bridge, Megascans, and Fab
	Technical requirements
	Evolution of the Unreal Engine ecosystem and understanding its acquisitions
	Unreal Engine Marketplace (now Fab)
	Quixel
	ArtStation
	Sketchfab

	Introducing Fab – one Engine, one marketplace
	Searching for assets on Fab
	Browsing and acquiring assets on Fab
	My Library and Downloads

	Using Fab with Unreal Engine

	Introducing Quixel Bridge
	Enabling Quixel Bridge for Unreal Engine
	Launching Quixel Bridge in Unreal Engine
	Using Quixel Bridge for Unreal Engine
	Browsing the content
	Assets
	Download settings
	Resolution
	Export settings

	Importing and integrating Megascans assets
	Understanding the imported resources
	Static Mesh
	Material and Material Instance
	Materials
	Material instancing

	Textures

	Exercise 2.1: Adding a 3D asset from Quixel Bridge to Unreal Engine
	Exercise 2.2: Selecting and applying a material to a Static Mesh
	Why is asset configuration important in Quixel Bridge?
	Summary

	Chapter 3: Ingestion and Static Meshes
	Technical requirements
	Understanding different mesh formats and their implications
	Commonly used static mesh formats in Unreal Engine
	Importance of format selection
	Choosing the right format

	Best practices for file preparation before import
	Optimizing mesh topology: ensuring efficient geometry
	UV unwrapping: laying the foundation for texturing
	Texture baking: capturing detail and realism

	Importing Static Meshes
	Step-by-step guide to importing Static Meshes
	Understanding the main parameters from the Import Options
	Mesh and Transform
	Materials

	Finishing the import process
	Troubleshooting common import issues

	Material assignment and adjustments
	Assigning materials
	Modifying materials
	Performance and aesthetics
	Balancing visual quality with performance
	Material adjustments for environmental conditions

	Mesh optimization techniques
	Why optimize?
	Optimization strategies

	Exercise 3.1: Importing our first Static Mesh
	Downloading an FBX file from Sketchfab
	Importing an FBX file into Unreal Engine

	Exercise 3.2: Importing FBX as Skeletal Meshes
	Summary
	References

	Chapter 4: Project Structure and Naming Conventions
	Technical requirements
	Advantages of a correct project structure and naming convention
	Maintaining order and clarity
	Enhancing collaboration
	Facilitating scalability and maintenance

	Examples of project structure and name conventions
	Exploring the Allar Style Guide
	Allowed characters
	Naming assets
	Content directory structure

	Guidelines for assets and resources created and imported into Unreal Engine

	Revision control tools for Unreal Engine
	Revision control options for Unreal Engine
	Best practices for source control in Unreal Engine

	Exercise 4.1: Applying a project structure and name convention protocols
	Exercise 4.2: Using revision control tools for Unreal Engine
	Summary

	Part 2: Creating and Detailing Your Open World
	Chapter 5: Managing Levels and Layers
	Technical requirements
	Working with levels
	Creating levels
	Saving levels
	Opening levels
	Managing levels
	Persistent level and sublevels
	Visibility and operations

	Level Details
	Level streaming
	Level streaming options

	Exploring lighting scenarios
	Using layers
	Creating layers
	Working with layers

	Understanding World Partition
	Working with World Partition
	Enabling World Partition
	Using World Partition

	Components and functionalities of World Partition
	Data Layers
	Level Instancing
	HLOD system
	One File Per Actor strategy

	Exercise 5.1: Setup and configuration of the level systems
	Setting up levels and sublevels
	Loading and unloading Levels with Level Streaming Volumes

	Choosing the right approach to level management
	Core systems of level management
	Selecting the most suitable workflow

	Summary

	Chapter 6: Building Your Landscape
	Technical requirements
	Introduction to level design
	Scene development: Inspiration and references
	Environment creation
	Selecting the environment creation method
	Fully modeled environment
	Landscape tools

	Understanding the blockout process

	Project creation and template selection
	Creating a blank project
	Deleting the existing landscape

	Using Unreal Engine’s Landscape tools
	Manage tools
	Landscape details panel
	Landscape Components

	Using Unreal Engine’s Sculpt tools
	Exercise 6.1: Creating a terrain from heightmaps
	Troubleshooting

	Exercise 6.2: Creating a custom landscape
	Exercise 6.3: Sculpting a new terrain
	Summary

	Chapter 7: Populating Your World with Foliage
	Technical requirements
	Understanding the terminology
	Using Foliage Mode
	Enabling Foliage Mode
	Using the Foliage tools
	Paint
	Erase
	Lasso
	Deselect
	Remove
	Select
	All
	Single
	Fill
	Reapply

	Static Mesh Foliage optimization
	Lighting
	Textures

	Summary

	Chapter 8: Introduction to Materials
	Technical requirements
	Understanding the terminology
	Exploring the Material Editor interface
	Graph
	Palette
	Viewport
	Details panel
	Toolbar
	Stats

	Working in the Material Editor
	Float
	Float2
	Float3
	Float4

	Overview of PBR materials
	Base Color
	Metallic property
	Specular
	Roughness
	Normal
	Ambient Occlusion

	Exercise 8.1: Creating a gold material
	Delving into texture implementation
	Formats and resolutions
	Working with textures in the Material Editor

	Material workflows
	Material Instances
	Texturing landscapes
	Common landscape material expressions
	Generating vegetation from landscape material
	Implementing landscape material expression

	Summary

	Part 3: Lighting and Post-Processing for Realism
	Chapter 9: Create Your World’s Atmospheric Lighting
	Technical requirements
	Lighting in Unreal Engine
	Light mobility
	Exploring Lumen

	Using the Environment Light Mixer
	DirectionalLight
	Light properties
	Light Shafts

	SkyLight
	Movable Sky Light
	Real Time Capture

	SkyAtmosphere
	Rayleigh Scattering
	Mie Scattering
	Art Direction
	Planetary atmospheres viewed from space

	ExponentialHeightFog
	VolumetricCloud

	Enhancing real-time rendering with Virtual Shadow Maps, Nanite, and Lumen
	Summary

	Chapter 10: Setting up your Post Process Volume
	Technical requirements
	Exploring Post Process Volumes in Unreal Engine
	When to use Post Process Volumes
	Post Process Volume properties
	Features of Post Process Volume
	Lens section
	Color Grading section
	Film section
	Global Illumination section
	Film Grain effect

	Best practices for overlapping and blending

	Color grading and tonemapping workflow
	Performance and frame-rate considerations for Post Process Volume
	Using a mental model
	How to test quickly

	Exercise 10.1: Color adjustment in an outdoor scene
	Summary

	Part 4: Blueprints, Testing, and Optimization
	Chapter 11: Understanding Programming Logic and Blueprints
	Technical requirements
	Basic concepts of programming with Blueprints
	Nodes
	Connections

	Exploring Blueprint types
	Level Blueprint
	Blueprint Class
	Data-Only Blueprint
	Blueprint Interface
	Blueprint Macro Library
	Blueprint Utilities

	Creating a Blueprint Class
	Understanding Blueprint Class hierarchy
	Exploring the Blueprint interface

	Exercise 11.1: Developing a tool for randomly placing Static Meshes
	Creating a Blueprint of the Actor class
	Adding nodes
	Adding variables
	Controlling the transform where the Static Meshes are created

	Exercise 11.2: Creating Blueprints with components
	Creating a Blueprint of the Actor class and adding components
	Creating a reference
	Creating a Blueprint from Actors in the level

	Exercise 11.3: Creating a Blueprint from the Editor
	Debugging and optimizing Blueprints
	Summary

	Chapter 12: Optimizing and Testing Your Scene
	Technical requirements
	Things to consider before starting a project
	Understanding real-time rendering
	Understanding how meshes are drawn: vertices, triangles, and pixels
	Diving into the rendering process in Unreal Engine
	Exploring the rendering workflow
	Frame 0
	Frame 1
	Frame 2
	Draw calls

	Understanding profiling
	Working with the GPU Visualizer
	Auditing with Statistics and Resource Usage
	Using Resource Usage

	Best practices
	Geometry
	LODs
	Generating LODs

	Textures
	Example: Scene analysis

	Summary
	The journey ahead

	Chapter 13: Unlock Your Exclusive Benefits
	Unlock this Book’s Free Benefits in 3 Easy Steps

	Other Books You May Enjoy
	Index

